
Geoscientific grids can be large—e.g., ~18.45 GB for the 3.75 km MPAS
grid—and high-resolution climate simulations can produce terabytes of data
across hundreds of variables and timesteps. Performance is therefore critical.
Below are two scaling plots showing gradient performance on a single data
variable and timestep, tested on one CPU node of NCAR Derecho’s
supercomputer (3rd Gen AMD dual-socket, 64 cores/socket, 2 threads/core).[6]

[1] Staniforth, Andrew, and John Thuburn. "Horizontal grids for global weather and climate prediction models: a review." Quarterly Journal of the Royal Meteorological Society 138.662
(2012): 1-26.
[2] Syrakos, Alexandros, et al. "A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods." Physics of Fluids 29.12 (2017).
[3] Barth, Timothy, and Dennis Jespersen. "The design and application of upwind schemes on unstructured meshes." 27th Aerospace sciences meeting. 1989.
[4] Tomita, Hirofumi, et al. "Shallow water model on a modified icosahedral geodesic grid by using spring dynamics." Journal of Computational Physics 174.2 (2001): 579-613.
[5] Kritsikis, Evaggelos, et al. "Conservative interpolation between general spherical meshes." Geoscientific Model Development 10.1 (2017): 425-431
[6] Computational and Information Systems Laboratory. 2023. Derecho: HPE Cray EX System (NCAR Community Computing). Boulder, CO: National Center for Atmospheric
Research. doi:10.5065/qx9a-pg09.

Firstly, I would like to thank you (the audience) for reading about my work. I would also like to
acknowledge my mentors Philip Chmielowiec, Orhan Ergolu, Katelyn Fitzgerald and Rajeev Jain for
providing me this opportunity to work with them on this project. Much gratitude goes to Virginia Do and
Jessica Wang both of whom organized the SIParCS internship behind the scenes for it to run so
smoothly and effectively. Many thanks go to all of the summer interns – we remain connected through
friendships and memories. This summer I also had insightful discussions with Allison Baker and Peter
Lauritzen – thank you for talking to me even though I was not your intern. Finally, I enjoyed all the
wonderful interactions I have had with people at lunch.

Looking ahead, we plan to:
• Implement robust and optimized versions of additional operators, including curl, divergence &

Laplacian
• Develop comprehensive documentation and workflows to support the community
• Add vector field visualization functionality to UXarray
• Look for feedback from our users

Please reach out to us!

In a similar manner as the gradient implementation (see above),
we can use finite volume discretizations of the Stokes’ Theorem
and the Gauss’s Theorem to obtain approximations for the vertical
component of the curl and the divergence.

Curl: ∇×𝒗 𝐶∗ ⋅ &𝒌 ≈ "
#$%(𝑪∗)

∑),+
𝒗 𝑪𝒊 -𝒗 𝑪𝒋

.
𝒍𝒊𝒋 ⋅ 𝒎)+

Divergence: ∇ ⋅ 𝒗 𝐶∗ ≈ "
#$%(𝑪∗)

∑),+
𝒗 𝑪𝒊 -𝒗 𝑪𝒋

.
𝒍𝒊𝒋 ⋅ 𝒏)+

Adding vector calculus to UXarray is essential for geoscientific data analysis:
• Gradient
Measures magnitude & direction
of steepest change of a scalar field, such as
temperature, salinity, pressure, density,…

• Curl
Measures circulation of
a vector field from wind velocity, ocean
currents, magnetic fields, …

• Divergence
Measures how a vector field acts
like a “sink” or a “source” to understand
upwelling/downwelling, heat or gas fluxes,
high/low pressure from rising or sinking
motion in horizontal wind fields,…

We use a finite volume discretization of the Green-Gauss theorem: [3-5]

i.e., the integral of a gradient vector field over a closed region is equal to
the boundary integral of the corresponding scalar field

For face-centered data
Want: Compute gradient at the face center 𝐶∗

Choose: Closed region to connect faces which share a common
node with the face center 𝐶∗

Approximate:

UXarray is an open-source Python package for geoscientific data analysis &
visualization on unstructured grids. There is no widely-used convention for
storing arbitrary unstructured grids, which makes UXarray a useful tool
because it supports a wide range of unstructured grid file formats & model
outputs:

Thanks to UXarray’s ability to operate directly on native unstructured grids,
users can avoid regridding their unstructured
mesh to a structured mesh, which means:

• No duplication of memory
• No introduction of discrepancy in data
• Eliminates extra overhead

although some regridding options are still available in UXarray if needed.

Unstructured grids on a sphere consist of arbitrary spherical polygons (not
necessarily the same shape or size), which can result in grids with:

• Unevenness
• Non-orthogonality
• Skewness

A classical grid is a lat-lon grid, where the sphere is
discretized via the longitude and latitude lines. However, this
discretization results in what is known as the “pole problem.” [1]

Many climate models now use all sorts of unstructured grids. The German
national meteorological service (DWD) uses an icosahedral grid (ICON).
NCAR’s Community Atmosphere Model (CAM) uses a cubed sphere grid.
LANL’s and NCAR’s Model for Prediction Across Scales (MPAS) uses Voronoi
meshes (primarily hexagonal-based).

Esther Gallmeier1,2, Philip Chmielowiec1, Orhan Eroglu1, Katelyn Fitzgerald1, Rajeev Jain3
1NSF National Center for Atmospheric Research (NCAR), 2Cornell University, 3Argonne National Laboratory

Scalable Vector Calculus for Geoscientific Analysis on Unstructured Grids in UXarray

Gradient Implementation Gradient Performance

Future Work

Acknowledgements

Curl + Divergence

Gradient Visualization

Unstructured Grids

UXarray

https://github.com/UXARRAY/uxarrayhttps://uxarray.readthedocs.io

“This material is based upon work supported by the U.S. National Science Foundation National Center for Atmospheric Research, which is a major facility sponsored by the
U.S. National Science Foundation under Cooperative Agreement No. 1755088. Any opinions, findings, and conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of the U.S. National Science Foundation.”

References

𝜙.gradient()
Input:

Scalar field 𝜙
Output:

Vector field ∇𝜙

Motivation

CAM MPASICONLat-Lon

unstructured grid structured grid

𝑪𝟑

𝑪𝟒

𝑪𝟓

𝑪𝟔

𝒏𝟏𝟐

𝒍𝟏𝟐

𝑪𝟏

𝑪𝟐

𝑪∗

∇𝜙 𝑪∗ ≈
1

𝑉𝑜𝑙(𝑪∗)
+
",$

𝜙 𝑪𝒊 + 𝜙 𝑪𝒋
2

𝒍𝒊𝒋 𝒏"$

0
'
∇𝜙 𝑑𝑉 = 3

('
𝜙𝑑𝑆

(∇×𝒗) ⋅ 𝒌 > 0
counter-clockwise

rotation

∇ ⋅ 𝒗 > 0
source

∇ ⋅ 𝒗 < 0
sink

∇ ⋅ 𝒗 = 0
neither

In the strong scaling plot on the left, the grid
resolution is held at a constant grid

resolution of 3.75 km for the MPAS mesh
while the number of threads increase from

1, 2, 4, …, 256, resulting in a reduced
workload per thread. In the ideal scenario, the

speedup would scale linearly (see dashed
line). However, we see the speedup taper off,

in particular between 128 & 256 threads.

In the weak scaling plot on the right, the grid
resolution increases (i.e., gets finer) as we

also increase the number of threads from 1,
2, 4, …, 256. Halving the resolution size roughly
quadruples the amount of work per thread, so

we need to simultaneously quadruple the
number of threads to keep a constant workload

per thread. Ideally, we would not see a
decrease in performance (see dashed lines).

∇𝜙(𝑥, 𝑦)

𝑪𝟑

𝑪𝟒

𝑪𝟓

𝑪𝟔

𝒏𝟏𝟐

𝒍𝟏𝟐

𝑪𝟏

𝑪𝟐

𝑪∗

𝒎𝟏𝟐

Synthetic face-centered “psi” data on a
Cubed Sphere grid with 5400 faces, 5402

nodes & 10800 edges

Face-centered data of 2 meter temperature
on a 30 km MPAS mesh with 655,362

faces, 1,310,720 nodes & 1,966,080 edges

Strong Scaling
(reduced workload per thread)

Weak Scaling
(constant workload per thread)

https://doi.org/10.5065/qx9a-pg09
https://doi.org/10.5065/qx9a-pg09
https://doi.org/10.5065/qx9a-pg09

