
Geoscientific grids can be large—e.g., ~18.45 GB for the 3.75 km MPAS 
grid—and high-resolution climate simulations can produce terabytes of data 
across hundreds of variables and timesteps. Performance is therefore critical. 
Below are two scaling plots showing gradient performance on a single data 
variable and timestep, tested on one CPU node of NCAR Derecho’s 
supercomputer (3rd Gen AMD dual-socket, 64 cores/socket, 2 threads/core).[6]
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Looking ahead, we plan to: 
• Implement robust and optimized versions of additional operators, including curl, divergence & 

Laplacian
• Develop comprehensive documentation and workflows to support the community
• Add vector field visualization functionality to UXarray
• Look for feedback from our users

Please reach out to us!

In a similar manner as the gradient implementation (see above), 
we can use finite volume discretizations of the Stokes’ Theorem 
and the Gauss’s Theorem to obtain approximations for the vertical
component of the curl and the divergence. 
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Adding vector calculus to UXarray is essential for geoscientific data analysis:
• Gradient
Measures magnitude & direction
of steepest change of a scalar field, such as 
temperature, salinity, pressure, density,…

• Curl
Measures circulation of
a vector field from wind velocity, ocean
currents, magnetic fields, …

• Divergence
Measures how a vector field acts 
like a “sink” or a “source” to understand
upwelling/downwelling, heat or gas fluxes, 
high/low pressure from rising or sinking
motion in horizontal wind fields,…

We use a finite volume discretization of the Green-Gauss theorem: [3-5]

i.e., the integral of a gradient vector field over a closed region is equal to 
the boundary integral of the corresponding scalar field

For face-centered data
Want: Compute gradient at the face center 𝐶∗

Choose: Closed region to connect faces which share a common 
node with the face center 𝐶∗

Approximate:

UXarray is an open-source Python package for geoscientific data analysis & 
visualization on unstructured grids. There is no widely-used convention for 
storing arbitrary unstructured grids, which makes UXarray a useful tool 
because it supports a wide range of unstructured grid file formats & model 
outputs:

Thanks to UXarray’s ability to operate directly on native unstructured grids, 
users can avoid regridding their unstructured
mesh to a structured mesh, which means:

• No duplication of memory
• No introduction of discrepancy in data
• Eliminates extra overhead 

although some regridding options are still available in UXarray if needed. 

Unstructured grids on a sphere consist of arbitrary spherical polygons (not 
necessarily the same shape or size), which can result in grids with:

• Unevenness
• Non-orthogonality
• Skewness

A classical grid is a lat-lon grid, where the sphere is
discretized via the longitude and latitude lines. However, this 
discretization results in what is known as the “pole problem.” [1]

Many climate models now use all sorts of unstructured grids. The German 
national meteorological service (DWD) uses an icosahedral grid (ICON).
NCAR’s Community Atmosphere Model (CAM) uses a cubed sphere grid. 
LANL’s and NCAR’s Model for Prediction Across Scales (MPAS) uses Voronoi 
meshes (primarily hexagonal-based). 
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In the strong scaling plot on the left, the grid 
resolution is held at a constant grid 

resolution of 3.75 km for the MPAS mesh 
while the number of threads increase from 

1, 2, 4, …, 256, resulting in a reduced 
workload per thread. In the ideal scenario, the 

speedup would scale linearly (see dashed 
line). However, we see the speedup taper off, 

in particular between 128 & 256 threads. 

In the weak scaling plot on the right, the grid 
resolution increases (i.e., gets finer) as we 

also increase the number of threads from 1, 
2, 4, …, 256. Halving the resolution size roughly 
quadruples the amount of work per thread, so 

we need to simultaneously quadruple the 
number of threads to keep a constant workload 

per thread. Ideally, we would not see a 
decrease in performance (see dashed lines). 
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Synthetic face-centered “psi” data on a 
Cubed Sphere grid with 5400 faces, 5402 

nodes & 10800 edges

Face-centered data of 2 meter temperature 
on a 30 km MPAS mesh with 655,362 

faces, 1,310,720 nodes & 1,966,080 edges

Strong Scaling
(reduced workload per thread)

Weak Scaling
(constant workload per thread)
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