

radIOTic: An intelligent, fault tolerant, AI-Enhanced Mesonet for Atmospheric Sensing Adebowale Adelekan, Isaac Oppong-Baah, Agbeli Ameko, Keith Maull, John Schreck

PROJECT PAGE

Motivation

- Communities lack control over how environmental data is collected, stored, and shared—most existing systems are centralized and proprietary.
- High costs and complexity of traditional weather stations make dense, local-scale monitoring inaccessible for many regions.
- Environmental sensing needs vary, requiring systems that can adapt to different conditions, sensor types, and deployment scenarios.

Objectives

- Enable community ownership of sensing networks with open-source, decentralized infrastructure and full control over local environmental data.
- Lower the barrier to deployment through low-cost, modular hardware and fault-tolerant mesh networking—resilient to station or gateway failures.
- Support diverse sensing needs with flexible, plug-and-play support for heterogeneous sensors and mobile or fixed deployment configurations.
- Infuse intelligence into the network with AI models that summarize sensor data, forecast the weather, and provide real-time environmental insights.

Design and Implementation

LoRa-Enabled Weather Stations

- Built on microcontrollers with modular support for diverse sensors (e.g., temperature, humidity, air quality, UV, rainfall, CO₂, GPS).
- Use intelligent ping/pong discovery to select the optimal gateway or relay path based on signal strength and node load.
- Support multi-hop relaying to extend network reach, using connection timeouts to detect and adapt to failed nodes or gateways.
- Plug-and-play and GPS-aware, dynamically updating station location on the live map.

Raspberry Pi Gateways

- Serve as LoRa-to-IP relays, forwarding data from multiple stations to the cloud.
- Include load-awareness, enabling fair distribution of traffic across multiple Pis.
- Stations automatically switch gateways when a connection times out, ensuring robust, self-healing communication.

Cloud Microservices Infrastructure

- Containerized architecture using Docker: includes API backend, PostgreSQL for storage, Redis for real-time data, and ThingsBoard for live dashboards.
- Interactive map powered by Redis displays real-time station data and mobility.
- o Integrated AI via the **Gemma model** synthesizes sensor readings into human-readable summaries of current as well as forecasted conditions.
- Deployed on CIRRUS for scalable, community-replicable infrastructure.

Key Technical Features and Tools

Thingsboard

- Real-time sensor dashboards and live telemetry visualization
- Automatic station registration with metadata and status tracking
- Customizable charts, maps, and widgets for community-friendly displays
- Multi-station views for comparative environmental monitoring
- Built-in rule engine for alerts and automation
- Web-based interface accessible without programming skills

Real time Station Map

- Displays all active sensor stations on an interactive map
- Supports heterogeneous nodes with varying sensor setups
- Visualizes mobile deployments using live GPS data
- Shows forecasted conditions per station using integrated Al
- Converts real-time and forecast data into human-readable summaries
- WebSocket-powered for low-latency, scalable client updates
- Online stations shown in green, offline ones in red for quick status checks

NCAR BOULDER MESONET

- Testbed Sites(Fixed deployment):
- 3 fixed stations deployed at Mesa Lab
- Two gateways on Tower A and Tower B for redundancy
- Station and gateway pairs at Center Green and Foothills Lab
- Mobile deployment:
- A robotic dog equipped with sensors and custom 3D-printed mounts acts as a mobile station
- Key Field Observations:
- Multi-hop routing allowed stations out of direct range to reach a gateway via nearby nodes
- Ping/pong load balancing enabled stations to dynamically select the optimal gateway
- Demonstrated fault tolerance and adaptability in real-world deployment