
This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Optimizing Resource Usage in Scheduled Jobs

November 20, 2020

Brian Vanderwende
CISL Consulting Services

A selective summary of our schedulable resources

2

Cheyenne
• CPU-only nodes
• 36 physical cores/tasks
• 72 SMT threads
• Regular nodes with 45 GB usable

memory (default)
• Large mem nodes with 109 GB

usable memory
• Exclusive or shared queues

PBS Pro scheduling

Casper
• CPU & CPU+GPU nodes

– GP100 and V100 GPUs
• 36 physical cores/tasks
• 72 SMT threads
• Node memory up to ~1100 GB
• Up to 32 GB memory per GPU
• Node “features” like X11, CPU types

– SkyLake, CascadeLake CPUs

Slurm scheduling...

Optimal Resource Scheduling

Casper will be transitioned
to PBS Pro in 2021

3Optimal Resource Scheduling

Why focus on resource requests?

4

Good resource requests can:
• Use less core hours from your allocation
• Increase job priority (lower queue times)
• Improve application performance

Bad resource requests can:
• Reach out-of-memory condition on

Casper, leading to use of slower NVMe
swap space

• Cause submit and runtime failures
• In rare cases, crash nodes

Optimal Resource Scheduling

Resource requests in an MPI batch job on Cheyenne

5

#!/bin/bash
#PBS -A PROJ0001
#PBS -N mpi_job
#PBS -j oe
#PBS -k eod
#PBS -q regular
#PBS -l walltime=04:00:00
#PBS -l select=1:ncpus=30:mpiprocs=30:mem=109GB+4:ncpus=36:mpiprocs=36

Application temp data to scratch
export TMPDIR=/glade/scratch/$USER/temp
mkdir -p $TMPDIR

Run MPI program
mpiexec_mpt ./app

Store job statistics in log file
qstat -f $PBS_JOBID

• We expect application
to have higher
memory requirements
on head node

• Implicit resource
request of temp files
on scratch (/tmp on
nodes is very small!)

• Job statistics include
CPU and memory
utilization (purged after
one day)

Optimal Resource Scheduling

Job output and error log placement in PBS Pro

6

Application output and error messages are written to log files during runtime.
There are three possible storage behaviors depending on configuration:

Optimal Resource Scheduling

#!/bin/bash
#PBS -N mpi_job
#PBS -j oe

#!/bin/bash
#PBS -N mpi_job
#PBS -k oe

#!/bin/bash
#PBS -N mpi_job
#PBS -j oe
#PBS -k oed

Default - log(s) are written to /tmp (memory) during runtime and then when
the job completes they are moved to job directory on GLADE.

Home - log(s) are written to user’s home directory during runtime and stay
there after job completion. Note that PBS does not respect the -j, -o, and -e
options when using this mode.

Recommended - log(s) are written directly to the job directory on GLADE
during runtime. Avoids exhausting memory or home directory space when
jobs produce large quantities of logging messages.

Resource requests in an AI/ML GPU job on Casper

7

#!/bin/bash -l
#SBATCH --job-name=ML_job
#SBATCH --gres=gpu:v100:1
#SBATCH --ntasks=4
#SBATCH --ntasks-per-node=4
#SBATCH --mem=40G
#SBATCH --time=04:00:00
#SBATCH --account=PROJ0001
#SBATCH --partition=dav
#SBATCH --output=ml.out.%j

Application temp data to scratch
export TMPDIR=/glade/scratch/$USER/temp
mkdir -p $TMPDIR

module load python
ncar_pylib

Run machine learning driver script
python ml_driver.py

Store job statistics in log file
scontrol show job $SLURM_JOBID

• We reserve a single V100 for
GPU-enabled machine learning job

• Common to use 4-8 CPU tasks to
manage data for a single GPU in AI/ML

• V100 has 32 GB of video memory - we
request 40 GB of node memory to buffer
data movement to and from GPU

• Again, small /tmp space on node so use
GLADE scratch for temp files

• Store scontrol output including CPU and
memory usage - purged quickly

Optimal Resource Scheduling

Resource allocation and the shell in Slurm interactive jobs

8

execdav provides an interactive session on Casper via a two-step process
1) Use salloc to provision resources to a Slurm job
2) Use srun to distribute some/all of those resources to a bash/tcsh shell

By default, all memory and GPUs are allocated to the shell, leaving none for
sub-jobs (programs run using srun). To get around this, specify shell resources
after a separator.

Optimal Resource Scheduling

Distribute all resources to the shell (bash in this case)
cheyenne01$ execdav -n 4 --mem=10G -t 30 --gres=gpu:v100:1

Only distribute small subset of resources to the shell
cheyenne01$ execdav -n 4 --mem=10G -t 30 --gres=gpu:v100:1 -- --mem=1G --gres=none

Resource complexities with an MPI-GPU Jacobi solver

9Optimal Resource Scheduling

cheyenne01$ execdav -t 10 -n 2 --mem=10G --gres=gpu:v100:2

Start application using Slurm launcher
casper29$ srun -I ./jacobi
srun: error: Unable to create step for job 6202531: Requested nodes are busy

Start application using Open MPI launcher
casper29$ mpirun ./jacobi
7168x7168: 1 GPU: 6.3649 s, 2 GPUs: 70.4340 s, speedup: 0.09, efficiency: 4.52

Experiment 1
Request 2 tasks and 2 GPUs, allocating all resources to the
interactive bash shell

Resource complexities with an MPI-GPU Jacobi solver

10Optimal Resource Scheduling

Experiment 2
Request 4 tasks and 2 GPUs, allocating all resources to the
interactive bash shell

cheyenne01$ execdav -t 10 -n 4 --mem=10G --gres=gpu:v100:2

Start application using Open MPI launcher
casper29$ mpirun ./jacobi
7168x7168: 1 GPU: 13.6105 s, 4 GPUs: 141.2820 s, speedup: 0.10, efficiency: 2.41

Only use two CPU tasks to drive application (avoid stacking work on GPUs)
casper29$ mpirun -n 2 ./jacobi
7168x7168: 1 GPU: 3.3795 s, 2 GPUs: 1.7077 s, speedup: 1.98, efficiency: 98.95

Resource complexities with an MPI-GPU Jacobi solver

11Optimal Resource Scheduling

Experiment 3
Request 4 tasks and 2 GPUs, but reserve most memory and
both GPUs for srun sub-jobs

cheyenne01$ execdav -t 10 -n 4 --mem=11G --gres=gpu:v100:2 -- --mem=1G --gres=none

Start application using Slurm launcher
casper29$ srun --mem=10G --gres=gpu:v100:2 -I ./jacobi
7168x7168: 1 GPU: 11.4907 s, 4 GPUs: 3.0765 s, speedup: 3.74, efficiency: 93.38

Only use two CPU tasks to drive application (avoid stacking work on GPUs)
casper29$ srun -n 2 --mem=10G --gres=gpu:v100:2 -I ./jacobi
7168x7168: 1 GPU: 3.3928 s, 2 GPUs: 1.7074 s, speedup: 1.99, efficiency: 99.36

Start application using Open MPI launcher
casper29$ mpirun -n 2 ./jacobi
mpirun noticed that process rank 1 with PID 17220 on node casper29 exited on signal 11
(Segmentation fault).

Query past PBS/Cheyenne jobs using “qhist”

12

CISL provides a custom utility, called qhist, which allows for queries into the
PBS historical job database. You can:
• Search for all of your jobs over a date range or look back N days
• Display the average CPU and memory footprint per node for each job
• Filter to show only jobs that returned a non-zero (failure) status

cheyenne01$ qhist -u $USER -p 20201001-20201031 -s memory -t minutes | head -6
Job ID User Queue Nodes Submit Start Finish Mem(GB) CPU(%) Wall(m)
4801178 vanderw regular 4 29-1131 29-1146 29-1202 49.2 10.1 16.43
4805336 vanderw regular 4 29-1320 29-1320 29-1328 42.6 32.8 7.52
4805722 vanderw regular 4 29-1407 29-1410 29-1434 39.0 30.7 24.35
4703912 vanderw regular 4 23-1835 23-1836 23-1930 33.8 95.2 54.68
4719620 vanderw regular 4 25-1936 25-1940 25-2007 33.8 62.5 27.38

Optimal Resource Scheduling

Query past Slurm jobs using “sacct” command

13

Slurm’s historical job database can be queried using sacct. You can:
• View your jobs over a given date range
• Customize the output fields to view only desired information

Slurm has concept of “job steps”, so resource usage typically in step JOBID.0

casper-login1$ export SACCT_FORMAT=jobid,user,end%20,elapsed%10,ncpus%4,nnodes%4,reqmem%7,maxrss,state
casper-login1$ sacct -u vanderwb -S 2020-08-01 -E 2020-08-31 --units=G | head -n 8
 JobID User End Elapsed NCPU NNod ReqMem MaxRSS State
------------ --------- -------------------- ---------- ---- ---- ------- ---------- ----------
5668870 vanderwb 2020-08-03T13:33:44 00:05:06 2 1 1.78Gc COMPLETED
5668870.ext+ 2020-08-03T13:33:45 00:05:07 2 1 1.78Gc 0.00G COMPLETED
5668870.0 2020-08-03T13:33:44 00:05:03 1 1 1.78Gc 3.57G COMPLETED
5668884 vanderwb 2020-08-03T13:44:57 00:10:49 2 1 40Gn COMPLETED
5668884.ext+ 2020-08-03T13:44:58 00:10:50 2 1 40Gn 0.00G COMPLETED
5668884.0 2020-08-03T13:44:57 00:10:46 1 1 40Gn 6.73G COMPLETED

Optimal Resource Scheduling

Monitoring runtime resource usage on a single node

14

top - get CPU and memory usage of all processes on a node

Optimal Resource Scheduling

nvidia-smi - get information about GPU specs and usage

casper08$ top -b -n1 -u vanderwb -o +%MEM
top - 22:54:23 up 33 days, 4:44, 0 users, load average: 7.61, 7.55, 6.90
Tasks: 766 total, 5 running, 761 sleeping, 0 stopped, 0 zombie
%Cpu(s): 2.2 us, 2.4 sy, 0.0 ni, 95.2 id, 0.0 wa, 0.0 hi, 0.3 si, 0.0 st
KiB Mem : 79102374+total, 73400243+free, 47664012 used, 9357316 buff/cache
KiB Swap: 19535134+total, 19203357+free, 33177836 used. 73731980+avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
152664 vanderwb 20 0 10.7g 674188 591916 R 94.7 0.1 0:01.17 jacobi
152666 vanderwb 20 0 10.8g 672200 591944 R 89.5 0.1 0:01.17 jacobi

casper08$ nvidia-smi pmon -c 1
gpu pid type sm mem enc dec command
Idx # C/G % % % % name
 0 152666 C 31 5 - - jacobi
 1 152664 C 30 5 - - jacobi

Accessing running jobs to analyze resource usage

15Optimal Resource Scheduling

For the duration of your job, you have SSH privileges to access the scheduled
compute nodes. Use the -n option to qstat to get node information. (squeue
provides a NODELIST field by default)

Once you have a node, simply SSH to it from one of the login nodes. Note that
once your job ends, your session on the compute node will be terminated!

cheyenne1$ qstat -n -u vanderwb
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
--------------- -------- -------- ---------- ------ --- --- ------ ----- - -----
5103836.chadmin vanderwb regular STDIN 55037 1 1 -- 01:00 R 00:00 r9i4n10/0

cheyenne1$ ssh r9i4n10
vanderwb@r9i4n10:~>

Monitoring runtime resource usage across multiple nodes

16Optimal Resource Scheduling

peak_memusage - provides maximum memory usage for each task in
program (node memory only)

Used memory in task 1: 544.11MiB (+3.67MiB overhead). ExitStatus: 0. Signal: 0
Used memory in task 0: 542.12MiB (+3.67MiB overhead). ExitStatus: 0. Signal: 0

nvprof - profile many aspects of GPU performance and store profiles for
subsequent analysis (replaced soon by NSight)

Arm MAP - extensive performance profiler that supports both CPU and
GPU codes

Recognizing resource-related job failures

17

Sometimes you will see clues in the job logs that can motivate more
investigation:

• MPT ERROR: Rank 0(g:0) received signal SIGBUS(7)...

– Memory access error - typically indicates exhausting available RAM
• line 36: 16786 Killed mpirun…

– Indicates the job was killed by an external watchdog; if walltime limit
was not reached then also likely an out-of-memory failure

• CUDA error: out of memory
– Application ran out of GPU memory (node memory limit may be fine)

If job fails with no logs, you may have run out of /tmp or quota on GLADE!

Optimal Resource Scheduling

Common job resource pitfalls

18

• Request too little memory on Casper
– Some data destined for RAM will end up in swap space, significantly

impacting performance
• Requesting too much memory on Casper

– Longer queue wait; wasted node resources
• Request multiple nodes but application does not support MPI or other

distribution method
– No means to split problem across nodes = resource waste
– Can be easy to miss using GPU frameworks

Optimal Resource Scheduling

General tips for resource scheduling

19

• Use the fewest resources required to safely run your application to optimize
core-hour usage and queue wait times

• Only restrict job to specific node types if necessary for job execution…
more flexible requests schedule faster

• Verify that you are using what you think you are using!

If running a job configuration for the first time...
1. Use conservative resource requests
2. Check what your job actually used
3. Lower resource requests as appropriate

Optimal Resource Scheduling

Getting assistance from the CISL Help Desk

https://www2.cisl.ucar.edu/user-support/getting-help
• Walk-in: ML 1B Suite 55
• Web: http://support.ucar.edu
• Phone: 303-497-2400

Specific questions from today and/or feedback:
• Email: vanderwb@ucar.edu

20Optimal Resource Scheduling

https://www2.cisl.ucar.edu/user-support/getting-help
http://support.ucar.edu
mailto:vanderwb@ucar.edu

