Rhodes College

—1848 —

Developing and Evaluating Methods for
Distributing Observations in DART

Kamil Yousuf
Mentors: Helen Kershaw, Marlee Smith
Summer Internships in Parallel Computational Science

Data Assimilation Research Section
July 30, 2024

Data Assimilation Research Testbed (DART)

Observation

—

Sample models Change models
like the data (add “increments”)
(“forward operators”) to improve fit to obs
*/ T dsae —V
x —
* o /'
Simulations >
running in ' ' Time
parallel

Background | Methods | Results | Conclusion

Data Assimilation Research Testbed (DART)

Observation

—

Sample models Change models
like the data (add “increments”)
(“forward operators”) to improve fit to obs
*/ T dsae —V
x —
* o /'
Simulations >
running in ' ' Time
parallel

Background | Methods | Results | Conclusion

Observations: what are they?

Source data

Observation sequence file

OBSERVATION
CONVERTER

120= = 50
100 2|z 40
80 |z 30
60 = & 20
0i: "
20 M 10
0 < 20
20 Z(§= 30
-40 Z|§: -40

Background | Methods | Results | Conclusion

Observations: what are they?

Source data

Observation sequence file

OBSERVATION
CONVERTER

120= = 50
100 2|z 40
80 |z 30
60 = & 20
0i: "
20 M 10
0 < 20
20 Z(§= 30
-40 Z|§: -40

Background | Methods | Results | Conclusion

Observations: On disk vs. in memory representation?

Source data

. OBSERVATION\
On disk: CONVERTER

key = 1
t=1

Observation sequence file

e

\
In memory: 1 2) 3

fl\‘?;?* N\ NCAR Background | Methods | Results | Conclusion

Observations: Time windows

= window 1

D = window 2

f;s} N\ NCAR Background | Methods | Results | Conclusion

Current Method

/)

=pe 0

= pe 1

- = window 1

= window 2

{l\g’F N\ NCAR Background | Methods | Results | Conclusion

Problems with Current Method

300

250 A

200 A

150 -

CAM6+DART reanalysis (10 6hr windows)

100

Node memory usage (%)

CAM6+DART reanalysis (1 6hr window)

0.2 0.4 0.6 0.8 1.0

Number of observations

1.2
le7

Project Goals

1. Distribute observations across all processes

2. Ensure distribution of observations does not affect
performance
Reduce communication to a minimum!
. Only when absolutely necessary!

Background | Methods | Results | Conclusion

Gather-Sort-Scatter

_
7.8

t=1 =22 t=3 t=4 t=7 t=6 t=5 t=8
@- re2
=pe3
@- sort
!
W|ndow1 S

Gather-Sort-Scatter

Source data

'\ Observation sequence file
OBSERVATION \
CONVERTER - - - - ‘
ey 2

key key 4

ey—1
t=1

2\ /\
o —
o fseek > o

EXN?S} "\ NCAR Background | Methods | Results | Conclusion

Gather-Sort-Scatter

_
7.8

t=1 =22 t=3 t=4 t=7 t=6 t=5 t=8
@- re2
=pe3
@- SOTT
!
W|ndow1 S

Gather-Sort-Scatter

_
7.8

t=1 =22 t=3 t=4 t=7 t=6 t=5 t=8
@- re2
=pe3
@- sort
!
W|ndow1 S

Gather-Sort-Scatter

_
7.8

One-sided communication

buffer:

|| =window 1

I:I = window 2

—+
Il
T
I
AN

Background | Methods | Results | Conclusion

One-sided communication

~t
Il
N
it
Il
N

buffer:

|| =window 1

I:I = window 2

—+
Il
T
I
AN

Background | Methods | Results | Conclusion

One-sided communication

buffer:

D =pe0
=pe 1 window:
|| =window 1
I:I = window 2 il — t=4

Background | Methods | Results | Conclusion

One-sided communication

buffer:
=pe0
=pe 1 window:
|| =window 1
I:I = window 2 il — t=4

f}fﬁ;}* "\ NCAR Background | Methods | Results | Conclusion

‘14

One-sided communication: direct linked list traversal vs. key caching

Given a single key: | 1

Lock / synchronize

get: | 1 retrieve key
at next time
of last
observation
(key = 2)

Unlock / wait for full retrieval

Observations: | key = 1
location: ...

time: ...
next_time = 2

Background | Methods | Results | Conclusion

One-sided communication: direct linked list traversal vs. key caching

Observations:

Background | Methods | Results | Conclusion

Lock / synchronize

get: | 1 2 4
Unlock / wait for full retrieval
key =1 key =2 key =3 key =4 key =5
location: ... location: ... location: ... location: ... location: ...
time: ... time: ... time: ... time: ... time: ...
next_time = 2 next_time =3 next_time =4 next_time =5 next_time =6

Gather-Sort-Scatter: scaling / performance

N = 64,950,921
300 100
250 T
- 80
e—e o e o e o & o e 0 90— o
200 1
m
'g -60 g
S o
g 150 A 'E
v S
g - 40 (]
.—
100 -
-20
50 -
0 | Ll l Ll 1 1 1 1 I |l |l |l | | 0
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Number of processes —8— Time (s) (current model)

Background | Methods | Results | Conclusion

Gather-Sort-Scatter: scaling / performance

N = 64,950,921
300 100
250 A
- 80
@ @ @ & & @ @ @ @ @ @ & @ @
_ 200 A
§ 60w
8 | 2
8 150 @
£ w0 S
’.—
100 A
-20
50 -
0 T 0

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Number of processes —— Time (s)
—®— Time (s) (current model)

Background | Methods | Results | Conclusion

Gather-Sort-Scatter: scaling / performance

N = 64,950,921

300

100
250 A
- 80
200 A
4 - 60
[-
(@]
(@)
g 150 -
1)
E -
’_
100 A
-20
50 2
0 . - - T —— — — - -+ - 0
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Number of processes —— Time (s)
—o— Ideal time
—@— Time (s) (current model)
—u— Core hours

Background | Methods | Results | Conclusion

Core-hours

Gather-Sort-Scatter: scaling / performance

N = 64,950,921 N = 208,901,231 N = 626,703,695
300 100 900 200 400 900
800 L 175 350 4 L 800
250 A 56
i 700 A L
- 150 300 - 700
200 600 600
S 60 3 125, 3250
5 5 & 500 - 5 = 2
g 2§ g g (2903
§ 1501 S 3 100 % 9 200 A =
© 5 o 400 1 5 = L 400
£ tao © E O o S
= = 75 E —
100 1 300 1 I 300
50
200 100 1
L 50 L
&5 200
25
100 1 1
r 50 - 100
Y P D WP WP WSS — =~ - U WD D Y P D WP D WS — —_— —— S W WD .
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 1; 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 0 T T T T T
Number of processes —o— Time (s) Number of processes —o— Time (s) 512 1024 2048 4096 8192
—o— Ideal time —o— Ideal time Number of processes —®— Time (s)
—a— Time (s) (current model) —e— Time (s) (current model) —&— Ideal time
—&— Core hours —&— Core hours ~&— Core hours

Peak per-process memory

7.46 GB 23.6 GB 70.5 GB

Background | Methods | Results | Conclusion

One-sided communication: read times & mem usage
N = 64,950,921

400

350 A

300 -

250 A

200 A

Time (s)

150 +

100 -

50 A

128

256 512 1024
Number of processes

Bl direct memory access (DMA)

One-sided (no key caching)
pm One-sided (with key caching)

Background | Methods | Results | Conclusion

One-sided communication: read times & mem usage
N = 64,950,921

400

350 A

300 -

250 A

200 A

Time (s)

150 +

100 -

50 A

128

256 512 1024
Number of processes

Bl direct memory access (DMA)

One-sided (no key caching)
pm One-sided (with key caching)

Background | Methods | Results | Conclusion

One-sided communication: read times & mem usage

N = 64,950,921

400

350 -

300 -

250 -

200 -

Time (s)

150 A

100 A

50 A

ol e * * . |
128 256 512 1024
Number of processes
Bl direct memory access (DMA)
One-sided (no key caching)
pm One-sided (with key caching)

Background | Methods | Results | Conclusion

One-sided communication: read times & mem usage

N = 64,950,921
400

350 A

300 -

250 A

200 +

Time (s)

150 ~

100 +

50 A

ol e * * . |
128 256 512 1024
Number of processes
E direct memory access (DMA)
One-sided (no key caching)
pm One-sided (with key caching)

Peak per-process memory

205 MB 279 MB 462 MB

Background | Methods | Results | Conclusion

Drawbacks and Improvements

- Both methods have clear drawbacks
- Memory usage
. Scalability

. Time to retrieve

.- |deas for ideal method?
- One-sided + key-caching?

Retrieve key values using collectives?

fgs} N\ NCAR Background | Methods | Results | Conclusion

Discoveries and Enhancements

- Reading subsequence of observations across multiple

processes faster
- Distributing observations reduced per-process memory
used

- More observations could be read (> 600 mil!)

. Stepping towards futureproofing DART!

fgs} "\ NCAR Background | Methods | Results | Conclusion

Acknowledgements

 Helen Kershaw - profiler and compiler assistance; sound HPC advice; poster &
presentation advice; code review

« Marlee Smith - profiler assistance, code review, poster & presentation advice
« Jeff Anderson, Moha Gharamti - in-depth explanations of DART algorithms
« Dan Amrhein - presentation advice

« Eva Sosoo, Ben Fellman, Virginia Do, Jessica Wang, Jerry Cyccone, all SIParCS
interns — making this summer amazing!

Thank you for attending!

f;i:;F‘” N\ NCAR Background | Methods | Results | Conclusion

