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Observations: what are they?
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Observations: On disk vs. in memory representation?

Source data
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Observations: Time windows
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Current Method
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Problems with Current Method
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Project Goals

1. Distribute observations across all processes

2. Ensure distribution of observations does not affect
performance
Reduce communication to a minimum!
.  Only when absolutely necessary!
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Gather-Sort-Scatter
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One-sided communication
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One-sided communication
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One-sided communication: direct linked list traversal vs. key caching

Given a single key: | 1

Lock / synchronize

get: | 1 retrieve key
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Unlock / wait for full retrieval

Observations: | key = 1
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time: ...
next_time = 2
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One-sided communication: direct linked list traversal vs. key caching

Observations:
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Lock / synchronize

get: | 1 2 4
Unlock / wait for full retrieval
key =1 key =2 key =3 key =4 key =5
location: ... location: ... location: ... location: ... location: ...
time: ... time: ... time: ... time: ... time: ...
next_time = 2 next_time =3 next_time =4 next_time =5 next_time =6




Gather-Sort-Scatter: scaling / performance

N = 64,950,921
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Gather-Sort-Scatter: scaling / performance

N = 64,950,921 N = 208,901,231 N = 626,703,695
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One-sided communication: read times & mem usage
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One-sided communication: read times & mem usage

N = 64,950,921
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Drawbacks and Improvements

- Both methods have clear drawbacks
- Memory usage
. Scalability

. Time to retrieve

.- |deas for ideal method?
- One-sided + key-caching?

Retrieve key values using collectives?
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Discoveries and Enhancements

- Reading subsequence of observations across multiple

processes faster
- Distributing observations reduced per-process memory
used

- More observations could be read (> 600 mil!)

. Stepping towards futureproofing DART!
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