LEVERAGING WAVE AND SPATIAL CONTEXT DATA TO IMPROVE HOLODEC
SEGMENTATION MODEL PERFORMANCE
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OVERVIEW

This project expanded upon the HOLODECML
hydrometeor segmentation model for
HOLODEC-1i particle holograms by
incorporating holographic phase data, sensor
depth context data, refined evaluation
methods, and streamlined training and
execution to improve water particle detection
accuracy and efficiency.
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Figure 1 - HOLODEC-ii Hydrometeor Detector
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1: National Center for Atmospheric Research, 2: Tulane University of Louisiana

IMPROVEMENTS

O PyTorch
CHANGES TO PREPROCESSING
More efficient tensor tiling and
reconstruction scheme
Rebuilt PyTorch dataloader to include
context information
Upsampled training data
Variable loss function weights >

NVIDIA

CUDA

CONTEXT ADDED TO MODEL

n “lookahead” context frames ahead of
target depth to sensor

Phase component of complex tensor from
original data

Larger image tiles, more etficient GPU
Memory usage

FULL FRAME INFERENCE

Collect performance metrics from model
on entire sensor images, evaluate using
AUROC

Simulate realistic use performance

Validation Loss across Model Configurations

Optimal Model
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Figure 2 - HOLODEC Synthetic Example Data
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AUC Objective vs Dice Objective Segmentation Performance
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OPTIMIZATION

HYPERPARAMETERS ucax €echo-opt
Optimized using ECHO-OPT, extension
of Optuna hyperparameter framework
Custom built at NCAR MILES for earth
science models

TUNING

Performed on CISL Cheyenne computing
beds

Optimal configuration over >600
parameter settings

FUTURE WORK

Expand from water (sphere) to ice
(polygon) particle detection

Optimize runtime, goal is on-the-fly
particle recognition

GAN-stylized training data to accurately
simulate campaign data

Create models for data from different
lasers and sensor architecture

Optimization History Plot
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eCompleted as part of the 2023 Summer
Internships in Parallel Computational
Science at the National Center for
Atmospheric Research in Boulder, CO in
collaboration with NCAR MILES

° Tg\c;;lsufglt?(t)f;& Dice loss for train, AUROC on full images for e AUROC converges to ~0.7 regardless of hyperparameters

> Dice Loss =1 - [ 2TP / (2TP + FP + FN)] e Inherent limit to model class within problem space? Could resolve
with more computing power (larger batch size)
e New validation metric yields better model within ten epochs (fig 5)
e Higher accuracy model within fewer epochs requires less resources
to train and develop

e Best performance with preprocessing: 0.073 Dice loss (fig 4)

e Best performance with realistic evaluation: 0.035 Dice loss (fig 5)

e Holdout hologram validation method better reflects practical
use-case performance for campaigns

ePowered by the NCAR CISL Casper and
Cheyenne computing beds.

eFunded by the National Science
Foundation.
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