
GPU Enablement of MICM Chemistry Solver

Qina Tan (Colorado School of Mines)
Mentors: Jian Sun, John Dennis, Matthew Dawson
SIParCS Project 9
Presentation Date: August 1st , 2023

Background & Primary Project

Model-Independent Chemistry Module (MICM)
• Software package known as a chemistry solver, being developed in C++
• About 2000 lines of codes with 96% automatic testing coverage
• Computationally expensive part of an atmospheric model

Developed a GPU version of MICM via CUDA programming

architecture between CPUs and GPUs

GPU Architecture

Illustration of main difference between CPU and GPU:

Image source: https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html

GPU
Characteristics

Handle less complex workflow

Smaller cache memory

Many more arithmetic logic units and
floating point units

Parallelize computation of large set of
independent data

CUDA Programming

Thread: a stream of instructions and data
assigned to one process unit

Thread block: constructed by multiple
threads

Grid: constructed by multiple thread
blocks

Image source: https://docs.nvidia.com/

MICM Flowchart

Forcing Calculation

• Calculates the rate of change in atmospheric composition associated
with rate constants and reactant concentrations of a set of chemical

reactions that occurs in the atmosphere

• Data (rate constants, composition concentrations, etc.) are organized into

matrices

Matrix Computation

R[0,0] R[0,1] R[0,2] R[0,3]

R[1,0] R[1,1] R[1,2] R[1,3]

R[2,0] R[2,1] R[2,2] R[2,3]

R[3,0] R[3,1] R[3,2] R[3,3]

Columns: rate constants for each reaction in the chemical mechanism

Rows:
grids boxes in a 3D
atmosphere model

Matrix as Linear Vector

Row-major order:

Column-major order:

R[0,0] R[0,1] R[0,2] R[0,3] R[1,0] R[1,1] R[1,2] R[1,3] ...

R[0,0] R[1,0] R[2,0] R[3,0] R[0,1] R[1,1] R[2,1] R[3,1] …

Parallelism at Grid Level: Row-Major Order

L1 cache: stride access pattern

R[0,0] R[0,1] R[0,2] R[0,3]
R[1,0] R[1,1] R[1,2] …

R[0,0] R[0,1] R[0,2] R[0,3] R[1,0] R[1,1] R[1,2] ...

Parallelism at Grid-Level: Column-Major Order

L1 cache: contiguous access pattern in parallel

R[0,0] R[1,0] R[2,0] R[3,0]
R[0,1] R[1,1] R[2,1] …

R[0,0] R[1,0] R[2,0] R[3,0] R[0,1] R[1,1] R[2,1] …

Parallelism at Grid/Reaction Level:
Column-Major Order

Problem: data race may happen!

Solution with trade-off: Atomic operations atomicAdd()

R[0,0] R[1,0] R[2,0] R[3,0] R[0,1] R[1,1] R[2,1] …

F[0,0] F[1,0] F[2,0] F[3,0] F[0,1] F[1,1] F[2,1] …

Experiments
• Machine: Gust
• Compiler: nvhpc/23.5
• Bit for Bit Accuracy of CPU code

against GPU code
• CPU performance: 1 CPU core
• GPU performance: 1 NVIDIA A100

GPU (w/ and w/o data transfer time)
• 3 CUDA versions

Time Performances: GPU Implementations

• Base: Grid_parallel_row_order
• Avg. speedup: 1.44x (orange)
• Avg. speedup: 1.40x (green)
• (included data transfer time)

Constant inputs: 500 reactions, 400 chemical species

Time Performances: CPU vs GPU

• Avg. speedup: 2.62x
• w/ data transfer time

Constant inputs: 500 reactions, 400 chemical species

Time Performances: CPU vs GPU

Avg. Speedup: 66.30x
w/o data transfer time

Constant inputs: 500 reactions, 400 chemical species

Conclusion

• We ported AddForcingTerms() function to GPU via CUDA
• We evaluated different CUDA implementations

• Different memory layouts
• Different levels of parallelism

• Performances show increasing speedups with increasing problem size
• Future work:

• Port more functions to GPU using similar approach
• Explore just-in-time compilation GPU code

Acknowledgement
• NCAR: for providing funding
• Jian Sun, John Dennis and Matthew Dawson:

 my mentors, who provided invaluable guidance and

 insightful feedbacks throughout the project
• Kyle Shores (ACOM): for his expert assistance in making

possible for my CUDA codes to compile and run
• SIParCS Cohort: for an unforgettable summer in Boulder!

