
Template ID: debatingdenim Size: 48x36

CI for ASAP Applications: Using Github Actions
for Rapid Development

Haniye Kashgarani1,2, Supreeth Suresh1, and Cena Brown1

1National Center for Atmospheric Research, 2University of Wyoming

This project uses Continuous Integration (CI) to enhance the
reproducibility, productivity, and efficiency of the software
development process, specifically for parallel GPU and CPU
applications. This method streamlines code management and
helps resolve potential issues early when multiple community
developers contribute to a project.
● The project involved creating a CI pipeline using GitHub Actions
● This tool allowed us to create self-hosted runners customized

to our specific hardware and software needs.
● We applied CI to GPU-accelerated CLUBB, MPAS-A, and

MURaM models, requiring a special hardware-software setup.
● The self-hosted runners were set up on machines equipped

with GPUs (CASPER).
As an essential part of the project, all processes have been
documented to provide a comprehensive guide for future
implementation. Additionally, we have provided example
workflows for building and testing MPI, CUDA, Fortran, and C
programs with OpenACC support with commonly used build
systems like Make, Autoconf, and CMake. These resources
support both current project needs and expected future
development.

● Learning about and creating specific
documentation for Make, CMake and Autoconf

● Developing or finding a suitable Docker image
including both NVHPC and OpenMPI libraries.

● Choosing the cheapest way to set up self-hosted
runners:
○ CircleCI: Organization level self-hosted runner,
○ Jacamar: Only for Gitlab repositories,
○ Rescale GPU resources: Expensive,
○ RAPID GPU self-hosted runners: Required

subscription.

CI (Continuous Integration) is a method that automates the
integration process each time team members commit code,
ensuring seamless teamwork and early problem detection.
CD (Continuous Delivery) means we're always ready to show our
work. It's like having a project that's always polished and ready for
a presentation and deployment, with minimal extra effort needed.
Why CI/CD Rocks:
● Dependency management
● Library versions: Dealing with CUDA and OpenMPI versions
● GPU compatibility
● Frequent automated testing
● Early detection of bottlenecks
● Faster Integration
● Speedy Development
Investigated Tools: CircleCI, and Github Actions
Runners: built-in runners, self-hosted runners (HPC, laptop,
Rescale nodes, RAPIDS)

Thank you to Carl Ponder (NVIDIA) for providing the
Docker container used in this project. Additional
thanks to CISL, the SIParCS team, and the SIParCS
2023 cohort for an amazing and unforgettable
summer.

We achieved the two main goals of the project this
summer:
● Documentation and Examples
● Focus on implementing CI for multiple ASAP

applications.

Future work:
● Implementing CD as the next step for automating

the software deployment and release.
● Building CI workflows for all the ASAP

applications.
● Change the repository level self-hosted runner to

Organization level self-hosted runner and
continuously running the runner to make it easier
to run the workflows.

CONCLUSION AND FUTURE WORK

ACKNOWLEDGEMENTS

ABSTRACT CI PIPELINE CHALLENGES

WHAT IS CI/CD?

Success Deploy

Code
Version
Control

CI Tools

Test

Build

Event

Workflow

Steps:
- Build 1
- Test 1

Steps:
- Build 2:
- Test 2:

Job 1 Job 2

Runner 1 Runner 2

Events:
Push
Pull Request
Issue
API
Schedule
Manual: Workflow_dispatch

Runners:
CI built-in runners:

- ubuntu-latest, windows, macOS
Self-hosted runners:

- HPC (Casper), laptop, etc.

Github Actions

WHY GITHUB ACTIONS?
● Flexibility: GitHub Actions can handle a wide variety of tasks.
● Built for GitHub: No need for external tools. GitHub Actions are part of GitHub itself.
● Powerful Workflows: Design workflows to run on triggers with high automation capabilities
● Diverse Environment Support: GitHub Actions work with Windows, Linux, or MacOS.
● Community Support: Large community creating and sharing actions.
● Self-Hosted Runners: Can set up our own runners with specific hardware or software.
● Free for Public Repositories: Unlimited free minutes for open source projects.

CLUBB, MPAS-A, and MURaM
MURaM: simulates aspects of the Sun's activity. (Code in C/C++, MPI and GPU-enabled)
CLUBB: models various types of clouds and atmospheric layers, which aids our understanding of
weather patterns and climate changes. (Code in Fortran, MPI and GPU-enabled)
MPAS-A: It is like a flexible weather magnifying glass. It can focus on specific regions without
losing sight of the bigger picture. (Code in Fortran, GPU-enabled)

hkashgar@uwyo.edu

Examples and Documentations:

Fortran

Casper_CPU

Build, Run, and
Test Github Runner

(CPU) Docker

Singularity

Casper Modules

Casper_GPU

CLUBB

MPAS-A

Application Language

MURaM

C

Runner Environment

