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1. Ensemble Data Assimilation

> A sequential approach used to estimate the dynamical state of a system with its uncertainties
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> Used for forecasting weather, floods, and even spread of diseases like covid.

Fig. 1 shows a schematic representation for forecasting the streamflow in a water body using
ensemble data assimilation, with the associated uncertainties.

2. HydroVis
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3. Future Work

Problem: Understanding and making reliable decisions based on ensemble forecasts for Earth systems can be challenging due

to the high dimension o
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‘ed software dependencies for better portability across systems.
oed (DART) developed at NCAR
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Control panel to:

> iInspect different system variables,
> change aggregation to be applied,
> Inspect data assimilation phases,

> iInspect inflation corrections,

> view water body gauge locations,

> set desired timestamp.
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Histograms to help assess the
uncertainty of the estimated
streamflow at locations of interest. This
panel also provides insights on the
nature of the underlying streamflow
orobabillity distribution: Gaussian, near
or non-Gaussian.
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> Add open loop data - forecasts
without data assimilation, for
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> Add more visual constructs focusing
on the uncertainties in the assimilation

orocess and the forecasts, eg: swarm
olot, hypothetical outcome plot, etc.

> Integrate within DART for real-time

monitoring and analysis of the
oerformance of both the forecasting
models and the forecasts.
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