
10_HandsOnNsight_nsys

June 21, 2022

#
Hands-On Session with Nsight Systems and Compute

By: Brett Neuman bneuman@ucar.edu, Consulting Services Group, CISL & NCAR

Date: June 16th 2022

In this notebook we explore profiling of the mini-app MiniWeather to present profiling techniques
and code examples. We will cover:

1. Overview of Profiling and Performance Sampling Tools
• Typical development workflows with profiling tools

2. NSight Systems for Overview Analysis of GPU Program Runtimes
• How to generate nsys reports and command line parameters
• Analysis of nsys reports and investigating the program timeline
• Generating NSight Compute profiling commands from nsys reports

Head to the NCAR JupyterHub portal and start a JupyterHub session on
Casper login (or batch nodes using 1 CPU, no GPUs) and open the notebook in
10_HandsOnNsight/nsys/10_HandsOnNsight_nsys.ipynb. Be sure to clone (if needed) and
update/pull the NCAR GPU_workshop directory.

Use the JupyterHub GitHub GUI on the left panel or the below shell commands
git clone git@github.com:NCAR/GPU_workshop.git
git pull

1 Workshop Etiquette

• Please mute yourself and turn off video during the session.
• Questions may be submitted in the chat and will be answered when appropriate. You may

also raise your hand, unmute, and ask questions during Q&A at the end of the presentation.
• By participating, you are agreeing to UCAR’s Code of Conduct
• Recordings & other material will be archived & shared publicly.
• Feel free to follow up with the GPU workshop team via Slack or submit support requests to

rchelp.ucar.edu
– Office Hours: Asynchronous support via Slack or schedule a time with an organizer

1

mailto:bneuman@ucar.edu
https://github.com/mrnorman/miniWeather
https://jupyterhub.hpc.ucar.edu/stable
https://www.ucar.edu/who-we-are/ethics-integrity/codes-conduct/participants
https://support.ucar.edu
https://ncargpuusers.slack.com

1.1 Notebook Setup

Set the PROJECT code to a currently active project, ie UCIS0004 for the GPU workshop, and QUEUE
to the appropriate routing queue depending on if during a live workshop session (gpuworkshop),
during weekday 8am to 5:30pm MT (gpudev), or all other times (casper). Due to limited shared
GPU resources, please use GPU_TYPE=gp100 during the workshop. Otherwise, set GPU_TYPE=v100
(required for gpudev) for independent work. See Casper queue documentation for more info.

[]: export PROJECT=UCIS0004
export QUEUE=gpudev
export GPU_TYPE=v100

module load nvhpc/22.2 &> /dev/null
export PNETCDF_INC=/glade/u/apps/dav/opt/pnetcdf/1.12.2/openmpi/4.1.1/nvhpc/22.
↪→2/include

export PNETCDF_LIB=/glade/u/apps/dav/opt/pnetcdf/1.12.2/openmpi/4.1.1/nvhpc/22.
↪→2/lib

1.2 Profilers - Why Bother?

So you have some code. Maybe you own it, maybe you’re inheriting it, maybe you’re trying to
improve it, maybe you’re just trying to keep it operational.

If you’re looking to understand, improve performance, or make informed decisions on
your code in a timely fashion, profiling is a good place to start.

The profiler does not make decisions for you. Profilers provide information that could lead to
more efficient use of resources for your code! Be mindful that profiling can add significant runtime
overhead to your application.

1.3 How to Get There…

1. Profile your code!

2. Make sure you have your baseline performance

• Performance is relative here
• Your baseline should be a realistic run of the application (real data, reasonable runtime)

3. Attempt to find potential performance gains using profiling tools, your experience, and work-
ing around your constraints

• Common project constraints include:
– Cluster configurations
– Hardware architectures (CPU/GPU/NIC types)
– Memory
– Flow control (simple instructions vs branching instructions)
– Programming language

2

https://arc.ucar.edu/knowledge_base/72581396#StartingCasperjobswithPBS-Concurrentresourcelimits

– Development time

• Tools can give you insight on what sections of code are using up significant runtime
– A function with the highest runtime often has highest potential to be optimized ..

but not always

1.4 Profiling Data Collection Methods

1. Sampling
• Collect data at a regular interval, or sampling frequency, to understand how much time

is spent in a function or application
2. Concurrency

• Identifying shared resource bottlenecks, communication overhead, and thread or kernel
inefficiencies via call stack traces

3. Memory
• Gathers information on data movement, allocation, and resource availability

1.5 The Focus of Our Session

In this session we will focus on profiling code on clusters with NVidia GPUs in the role of a
researcher. Our interest is in performant threads, kernels, GPU utilization, and memory efficiency.

2 NSight Systems and Compute

The Nsight Systems and Compute tools are used to profile, debug, and optimize applications that
utilize Nvidia GPUs. You can follow along by installing a free Nsight Systems client on your local
machine.

Running nsys -v, Casper provides Nsight Systems version 2021.2.4.12 with cuda/11.4.0 mod-
ule. The nvhpc/22.5 module provides version 2022.2.11.

3

https://developer.nvidia.com/nsight-systems

2.1 NSight Systems nsys

Workload level analysis: * Visualize algorithms, instruction flow, data flow, and scaling out to
multiple nodes * Identify areas to optimize within the code * Maximize computational and memory
utilization on the GPU

2.1.1 The NSight Systems Profiling Model

The Nsight profiling model is based on the Client Server model. The Client is your the machine
you will use to view reports generated by your code profiling. The Server is the node you run GPU
code on and generate the profiling report from. NVidia refers to this as the Two Phase approach
to profiling. A good workflow for profiling your code using the Client Server model would look like:

4

2.2 GPU kernel generation

Previously, we ran ACC directives on our miniWeather application. Compilers handle the conver-
sion into GPU code behind the scenes but it is important to note that ACC directives are converted
into NVIDIA CUDA kernels.

These kernels can be analyzed for performance using Nsight Systems and Compute.

3 miniWeather App OpenACC Profiling Example

3.1 Baseline: Profile Generation and Analysis

We’re going to profile the miniweather application using the most basic version of !$acc loop
parallel without any additional flags to help the compiler generate efficient parallel loops. This
might be a first step to converting a CPU based function into an OpenACC.

Remember, your baseline should be a stable working version of your code with a realistic
dataset and runtime.

Here we’re looking at one example of this implementation on the semi_discrete_step subroutine.

5

3.2 Setting up a baseline

The Nsight Systems profile launch within this script:

nsys profile -o miniweather_baseline fortran/build/openacc -t openacc,mpi

3.2.1 Notable flags for nsys profile:

• -t (–trace) parameters: cublas, cuda, cudnn, nvtx, opengl, openacc, openmp, osrt, mpi,
vulkan, none

– -t openmp,openacc
• -b (–backtrace) parameters: fp, lbr, dwarf, none

– -b fp
• –cuda-memory-usage parameters: true, false

– --cuda-memory-usage=true
• –mpi-impl parameters: openmpi, mpich

– --mpi-impl=openmpi
• -o

– -o myreport
– Names the generated profiling report

• –stats
– --stats=true
– Generate data file to analyze within the CLI
– Takes time to generate

• -h: help with explanations for all nsys commands plus sub commands
– Run below cells to see help text

6

Some of these options can add significant profiler overhead to your application.

Additional options for CLI profiling can be found in the NVIDIA NSight CLI documentation.

[]: nsys -h

[]: nsys profile -h

3.3 Launching the Profiler on Casper

You will see a .qdrep file after this job has finished.

[]: # Comment to prevent repeat runs
qsub pbs/pbs_miniweather_baseline.sh

3.4 Quick Analysis via CLI

The below command providese summary output about an nsys profile report and will look familiar
if you have used nvprof to profile codes previously.

[1]: nsys stats reports/miniweather_baseline.qdrep | grep -v "SKIPPED"

Using reports/miniweather_baseline.sqlite for SQL queries.
Running [/glade/u/apps/dav/opt/cuda/11.4.0/nsight-systems-2021.2.4/target-
linux-x64/reports/cudaapisum.py reports/miniweather_baseline.sqlite]…

Time(%) Total Time (ns) Num Calls Average Minimum Maximum
StdDev Name
------- --------------- --------- ------------ ---------- ----------

--------- --------------------
98.9 311,045,408,877 829,502 374,978.5 480 4,110,831

672,951.6 cuStreamSynchronize
0.6 1,952,049,331 414,751 4,706.6 2,995 1,276,614

3,407.5 cuLaunchKernel
0.1 360,215,231 92,188 3,907.4 2,308 392,225

2,940.6 cuMemcpyHtoDAsync_v2
0.1 353,236,646 92,374 3,824.0 2,242 1,474,974

6,696.5 cuMemcpyDtoHAsync_v2
0.1 328,508,188 46,186 7,112.7 1,109 1,278,036

59,376.3 cuCtxSynchronize
0.1 321,497,397 139,066 2,311.8 1,171 207,400

952.4 cuEventRecord
0.0 57,625,752 2 28,812,876.0 28,797,402 28,828,350

21,883.5 cuMemHostAlloc
0.0 54,836,720 92,856 590.6 423 250,978

1,077.5 cuEventSynchronize
0.0 3,205,420 31 103,400.6 1,358 1,425,718

7

https://docs.nvidia.com/nsight-systems/2020.3/profiling/index.html#cli-installing

337,926.8 cuMemAlloc_v2
0.0 1,062,003 2 531,001.5 6,018 1,055,985

742,438.8 cuMemAllocHost_v2
0.0 378,549 1 378,549.0 378,549 378,549

0.0 cuModuleLoadDataEx
0.0 45,674 4 11,418.5 2,677 25,152

10,628.6 cuMemsetD32Async
0.0 34,418 26 1,323.8 285 12,870

2,521.0 cuEventCreate
0.0 13,140 1 13,140.0 13,140 13,140

0.0 cuStreamCreate
0.0 2,444 1 2,444.0 2,444 2,444

0.0 cuInit

Running [/glade/u/apps/dav/opt/cuda/11.4.0/nsight-systems-2021.2.4/target-
linux-x64/reports/gpukernsum.py reports/miniweather_baseline.sqlite]…

Time(%) Total Time (ns) Instances Average Minimum Maximum StdDev
Name
------- --------------- --------- ----------- --------- ---------

-------- ----------------------------
34.8 107,763,085,030 46,083 2,338,456.4 2,319,212 2,593,737

7,323.0 compute_tendencies_z_369_gpu
22.5 69,648,080,748 46,083 1,511,361.7 1,493,267 1,812,785

16,927.7 compute_tendencies_x_278_gpu
22.3 69,197,111,596 46,083 1,501,575.7 1,383,189 1,749,617

22,199.8 compute_tendencies_z_334_gpu
10.9 33,900,055,922 92,166 367,815.2 357,149 503,131

5,227.3 semi_discrete_step_231_gpu
9.1 28,296,053,744 46,083 614,023.7 602,971 748,570

3,340.8 compute_tendencies_x_308_gpu
0.2 641,650,166 46,083 13,923.8 12,288 18,624

372.0 set_halo_values_z_452_gpu
0.1 288,514,354 46,083 6,260.8 5,408 14,560

261.2 set_halo_values_x_395_gpu
0.1 281,057,530 46,083 6,098.9 5,855 14,624

204.3 set_halo_values_x_418_gpu
0.0 172,575 2 86,287.5 78,335 94,240

11,246.5 reductions_871_gpu
0.0 19,680 2 9,840.0 9,280 10,400

792.0 reductions_871_gpu__red

Running [/glade/u/apps/dav/opt/cuda/11.4.0/nsight-systems-2021.2.4/target-
linux-x64/reports/gpumemtimesum.py reports/miniweather_baseline.sqlite]…

Time(%) Total Time (ns) Operations Average Minimum Maximum StdDev
Operation
------- --------------- ---------- ------- ------- --------- --------

8

54.0 471,292,258 92,188 5,112.3 864 1,370,900 6,557.4

[CUDA memcpy HtoD]
46.0 402,122,357 92,374 4,353.2 896 1,272,853 42,145.0

[CUDA memcpy DtoH]
0.0 3,295 4 823.8 768 864 40.2

[CUDA memset]

Running [/glade/u/apps/dav/opt/cuda/11.4.0/nsight-systems-2021.2.4/target-
linux-x64/reports/gpumemsizesum.py reports/miniweather_baseline.sqlite]…

Total Operations Average Minimum Maximum StdDev Operation
------------- ---------- ------- ------- ---------- -------

4,640,115.031 92,374 50.232 0.008 16,383.906 543.091 [CUDA memcpy

DtoH]
2,982,487.461 92,188 32.352 0.125 16,384.000 76.168 [CUDA memcpy

HtoD]
0.031 4 0.008 0.008 0.008 0.000 [CUDA memset]

Running [/glade/u/apps/dav/opt/cuda/11.4.0/nsight-systems-2021.2.4/target-
linux-x64/reports/osrtsum.py reports/miniweather_baseline.sqlite]…

Time(%) Total Time (ns) Num Calls Average Minimum Maximum
StdDev Name
------- --------------- --------- --------------- -----------

--------------- ---------------- ------------------------
33.3 987,640,768,804 107 9,230,287,558.9 1,161

328,766,957,311 50,003,634,104.2 epoll_wait
33.3 986,559,928,564 61,088 16,149,815.5 1,030

329,169,307,528 1,883,234,444.9 poll
22.2 659,270,247,276 167 3,947,726,031.6 42,623,923

329,639,298,880 25,355,113,168.4 select
11.1 328,094,330,739 656 500,143,796.9 500,041,057

500,223,002 18,299.5 pthread_cond_timedwait
0.1 1,724,974,920 708 2,436,405.3 3,076

9,646,299 2,564,917.6 pwrite
0.0 466,505,517 93,319 4,999.0 1,002

28,009,889 168,578.5 ioctl
0.0 288,069,694 1,340 214,977.4 1,961

69,167,686 2,062,232.5 open
0.0 162,721,610 4,757 34,206.8 1,000

136,774,462 1,983,215.8 read
0.0 83,935,099 29 2,894,313.8 20,654

36,350,795 8,714,027.3 pthread_cond_wait
0.0 34,064,040 1 34,064,040.0 34,064,040

34,064,040 0.0 truncate
0.0 29,334,013 5,797 5,060.2 1,260

9

34,663 1,278.6 openat
0.0 18,916,304 6 3,152,717.3 1,933,235

7,221,737 2,008,494.4 posix_fallocate
0.0 14,754,930 362 40,759.5 1,178

94,498 26,597.0 write
0.0 13,730,760 800 17,163.5 1,002

511,828 18,029.7 fgets
0.0 13,530,359 1,824 7,418.0 1,034

45,428 4,168.8 fcntl
0.0 10,610,390 100 106,103.9 67,392

1,143,113 119,644.2 pread
0.0 7,407,214 79 93,762.2 4,074

2,069,019 289,674.7 mmap64
0.0 2,023,120 7 289,017.1 87,286

704,188 273,939.8 munmap
0.0 1,743,626 11 158,511.5 135,661

183,676 16,536.6 pthread_create
0.0 1,641,874 179 9,172.5 1,727

119,641 13,449.5 fopen
0.0 1,625,239 9 180,582.1 17,973

1,009,903 315,363.9 sem_timedwait
0.0 1,365,161 229 5,961.4 2,627

109,471 11,292.9 mmap
0.0 1,303,347 30 43,444.9 23,810

100,760 17,623.9 pthread_mutex_lock
0.0 1,286,497 6 214,416.2 61,355

450,401 132,760.0 pthread_join
0.0 1,139,803 7 162,829.0 161,679

165,544 1,313.1 usleep
0.0 998,091 169 5,905.9 2,644

45,790 4,638.6 fclose
0.0 982,047 1 982,047.0 982,047

982,047 0.0 fork
0.0 622,275 373 1,668.3 1,052

9,440 1,018.0 socket
0.0 604,814 99 6,109.2 3,066

22,168 2,747.4 open64
0.0 561,750 4 140,437.5 1,537

555,991 277,036.1 recv
0.0 428,804 23 18,643.7 1,194

40,633 11,147.7 writev
0.0 299,150 1 299,150.0 299,150

299,150 0.0 ftruncate
0.0 252,765 55 4,595.7 1,000

16,299 4,538.4 recvmsg
0.0 191,132 57 3,353.2 1,004

10,467 2,386.2 mprotect
0.0 173,182 87 1,990.6 1,005

10

10,798 1,223.1 epoll_ctl
0.0 142,270 36 3,951.9 1,346

17,523 4,673.2 sendmsg
0.0 142,268 29 4,905.8 2,285

21,020 4,158.8 pthread_cond_broadcast
0.0 141,888 13 10,914.5 1,926

73,755 19,303.3 shmget
0.0 132,897 17 7,817.5 1,880

20,340 6,390.6 fread
0.0 107,304 45 2,384.5 1,010

12,512 2,311.5 fwrite
0.0 93,083 8 11,635.4 1,010

39,867 12,875.3 listen
0.0 66,044 5 13,208.8 5,001

32,386 11,680.4 shutdown
0.0 57,357 2 28,678.5 8,355

49,002 28,741.8 connect
0.0 56,751 6 9,458.5 5,408

14,082 3,481.1 getdelim
0.0 47,714 9 5,301.6 1,194

12,703 3,894.4 fgetc
0.0 34,170 16 2,135.6 1,094

3,660 700.0 bind
0.0 32,437 3 10,812.3 1,544

20,221 9,339.3 send
0.0 24,649 5 4,929.8 4,294

5,844 653.9 socketpair
0.0 17,315 6 2,885.8 2,188

3,803 628.6 pipe
0.0 16,192 2 8,096.0 7,430

8,762 941.9 shmdt
0.0 11,878 5 2,375.6 1,129

6,104 2,104.0 sigaction
0.0 9,314 3 3,104.7 2,156

4,708 1,396.3 pthread_rwlock_trywrlock
0.0 8,542 2 4,271.0 3,595

4,947 956.0 shmat
0.0 8,515 2 4,257.5 3,651

4,864 857.7 accept
0.0 6,379 2 3,189.5 2,643

3,736 772.9 process_vm_writev
0.0 5,661 1 5,661.0 5,661

5,661 0.0 pipe2
0.0 4,542 4 1,135.5 1,016

1,339 148.9 shmctl
0.0 3,075 1 3,075.0 3,075

3,075 0.0 pthread_mutex_trylock
0.0 1,470 1 1,470.0 1,470

11

1,470 0.0 recvfrom

3.5 Timeline Analysis via Nsight Systems GUI

3.5.1 Transfer or View the Report

Reports for analysis are located in the reports folder. For our baseline we will use the generated
report:

miniweather_baseline.qdrep

1. Transfer the .qdrep file to your local machine and load in into your local installation of the
NSight Systems application
• Download the file by right clicking and selecting Download on the JupyterHub browser

on the left.
2. Launch a X or VNC session on a GP100 GPU node on Casper. Launch nsight-nsys.

• KB Article to set up VNC: https://kb.ucar.edu/display/RC/Using+remote+desktops+on+Casper+with+VNC
• X session works but can be slow

3.5.2 Nsight Systems GUI

Open the file in the NSight Systems application. Below is the default view upon opening the
application.

12

3.5.3 Projects

13

3.5.4 Navigation

3.5.5 Event Descriptions

3.6 Baseline Timeline View

miniweather_baseline.qdrep

14

3.7 Patterns, Gaps, Walltime and Kernels

We can find instruction patterns of interest, sections where the GPU is idle, and also view details
on which kernel is running at a given time using the Timeline view. Below is an example of a
repeated pattern found in the baseline report. It will be useful to note that the time to complete
this repeated pattern is about 20ms.

Note that we zoomed into the timeline significantly.

3.7.1 Stats View

Quickly find CUDA API and GPU Kernel instruction runtimes. This is a good place to get ideas
on how to make improvements.

15

3.8 Asynchronous Loops Profile

I’m using the information that shows about 50% of our runtime in cuStreamSynchronize to make
changes to the existing !$acc loop parallel sections.

Modify the ACC loops to perform asynchronously. OpenACC will no longer wait for the flagged
loop to finish before launching another and should pipeline the loop iterations. We need to include
!$acc wait flags for sections to allow individual loop sections to finish before operating on a
different loop.

16

Recompile and profile the code again to see the changes you’ve made. Launch the script with the
new nsys profile command on Casper.

nsys profile -o miniweather_async fortran/build/openacc -t openacc,mpi

3.8.1 Asynchronous Analysis

miniweather_async.qdrep

Not a significant change. The command CuStreamSynchronize changed to CuCtxSynchronize but
still takes almost 50% of the runtime.

We can see that the memory operations are launching from within the same stream now, suggesting
that there is pipelining.

17

We’re still spending a lot of time in CuStreamSynchronize. Can we try to improve our parallezation
of loops?

3.9 Collapsed Loops Profile

Modify the ACC loops to perform asynchronously and also collapse loops based on how deep the
loop structure is.

Recompile and profile the code again to see the changes you’ve made. Launch the script with the
new nsys profile command on Casper.

nsys profile -o miniweather_async_collapsed fortran/build/openacc -t openacc,mpi

18

3.9.1 Collapsed Loops Analysis

miniweather_async_collapsed.qdrep

Here is the CuCtxSynchronize wait time for the Async profile. 15 seconds spent waiting to launch
a new round of instructions.

19

The same CuCtxSynchronize with the Collapsed loops profile. Down to 1ms.

You can also spot additional calls to kernels in between synchronization, so we’ve improved paral-
lelism.

20

3.9.2 Output to File and I/O Operations

After zooming into the timeline for the miniweather_async_collapsed.qdrep file you will notice
that there is an operation that occurs between kernel operations frequently.

Hovering over the operation gives us the call stack where we can identify the IO operation. Here we
see it coming from the _output subroutine. Recording the results of your simulation is important
but let’s see what sort of performance we can get by eliminating the call to output.

Compare the full timeline view of the miniweather_async_collapsed.qdrep and the
miniweather_nooutput.qdrep. You’ll notice the bubbles are gone and the walltime is 32s com-
pared to 41s (1.28x). Reducing idle time on the GPU and also reducing memory transfers between
host and device give us a good performance gain.

3.9.3 Expert View

Good spot to go for general recommendations based on common GPU problems and can provide
hints on where to start optimizing.

21

3.10 Other profiling tools

There is a lot of profiling work being done in the deep learning and scientific computing spheres.
There are other tools available to analyzing training time, visualization insight, and other
DL/ML focused profilers: 1) DLProf: https://docs.nvidia.com/deeplearning/frameworks/dlprof-
user-guide/ 2) Tensorboard: https://www.tensorflow.org/tensorboard/get_started 3) NVidia Tools
Extension (NVTX) * NVIDIA Tools Extension (NVTX) is an API that allows for additional con-
trol for profiling your applications. NVTX can be particularly useful when you have a specific
section of your code that you need to gather performance information on. It can also be a useful
intermediate step between the higher level Nsight Systems view and the kernel optimization of
Nsight Compute. * NVTX header file used and code marked to profile specific sections of your
larger codebase * Jiri Kraus (our next workshop presenter) has a very good walkthrough of using
NVTX for C/C++: https://developer.nvidia.com/blog/cuda-pro-tip-generate-custom-application-
profile-timelines-nvtx/

NVTX FORTRAN Example:

program main
use nvtx

call nvtxStartRange("First label")
do n=1,100

! Create custom label for each marker
write(itcount,'(i4)') n
! Range with custom color
call nvtxStartRange("Label "//itcount,n)
...
call nvtxEndRange

end do
call nvtxEndRange

end program main

22

4 Launching Nsight Compute with Nsight Systems

Information from hovering over a kernel launch instruction:

You can also right click on the kernel and see a textual timeline of all instances of that kernel in
your application:

23

From here you can right click on the kernel launch instruction in the timeline and analyze it in
Nsight Compute. Select Analyze the Selected Kernel with NVIDIA Nsight Compute:

Here is the window to launch Nsight Compute:

24

5 Resources

• NVIDIA Nsight Systems User Guide
• Climate related optimizations for GPUs, by Matt Norman (ORNL)
• Overview of common profiling methods
• NVTX Walkthrough
• OpenACC Best Practices for GPU Refactoring

5.1 Move On to Nsight Compute Profiler Tool

Nsight Compute Profiler

25

https://docs.nvidia.com/nsight-systems/UserGuide/index.html
https://github.com/mrnorman/miniWeather/wiki/A-Practical-Introduction-to-GPU-Refactoring-in-Fortran-with-Directives-for-Climate
https://www.atatus.com/blog/what-is-code-profiling-a-detailed-explanation/#Types-of-Code-Profiling
https://developer.nvidia.com/blog/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0_0.pdf
../ncu/10_HandsOnNsight_ncu.ipynb

	Workshop Etiquette
	Notebook Setup
	Profilers - Why Bother?
	How to Get There…
	Profiling Data Collection Methods
	The Focus of Our Session

	NSight Systems and Compute
	NSight Systems nsys
	The NSight Systems Profiling Model

	GPU kernel generation

	miniWeather App OpenACC Profiling Example
	Baseline: Profile Generation and Analysis
	Setting up a baseline
	Notable flags for nsys profile:

	Launching the Profiler on Casper
	Quick Analysis via CLI
	Timeline Analysis via Nsight Systems GUI
	Transfer or View the Report
	Nsight Systems GUI
	Projects
	Navigation
	Event Descriptions

	Baseline Timeline View
	Patterns, Gaps, Walltime and Kernels
	Stats View

	Asynchronous Loops Profile
	Asynchronous Analysis

	Collapsed Loops Profile
	Collapsed Loops Analysis
	Output to File and I/O Operations
	Expert View

	Other profiling tools

	Launching Nsight Compute with Nsight Systems
	Resources
	Move On to Nsight Compute Profiler Tool

