
10_HandsOnNsight_ncu

June 21, 2022

#
Hands-On Session with Nsight Systems and Nsight Compute

By: Daniel Howard, Consulting Services Group, CISL & NCAR

dhoward@ucar.edu

Date: June 16th, 2022

In this notebook we explore profiling of the mini-app MiniWeather to present profiling techniques
and code examples. We will cover:

• Overview of Profiling and Performance Sampling Tools
– Typical development workflows with profiling tools

• NSight Compute for Individual GPU Kernel Performance Analysis
– How to generate ncu reports and command line parameters
– Overview of GPU kernel profiling data and source code timing heatmaps
– External resources for interpreting ncu reports data

Head to the NCAR JupyterHub portal and start a JupyterHub session on
Casper login (or batch nodes using 1 CPU, no GPUs) and open the notebook in
10_HandsOnNsight/ncu/10_HandsOnNsight_ncu.ipynb. Be sure to clone (if needed) and
update/pull the NCAR GPU_workshop directory.

Use the JupyterHub GitHub GUI on the left panel or the below shell commands
git clone git@github.com:NCAR/GPU_workshop.git
git pull

1 Workshop Etiquette

• Please mute yourself and turn off video during the session.
• Questions may be submitted in the chat and will be answered when appropriate. You may

also raise your hand, unmute, and ask questions during Q&A at the end of the presentation.
• By participating, you are agreeing to UCAR’s Code of Conduct
• Recordings & other material will be archived & shared publicly.
• Feel free to follow up with the GPU workshop team via Slack or submit support requests to

support.ucar.edu
– Office Hours: Asynchronous support via Slack or schedule a time with an organizer

1

mailto:dhoward@ucar.edu
https://jupyterhub.hpc.ucar.edu/stable
https://www.ucar.edu/who-we-are/ethics-integrity/codes-conduct/participants
https://support.ucar.edu
https://ncargpuusers.slack.com

1.1 Notebook Setup

Set the PROJECT code to a currently active project, ie UCIS0004 for the GPU workshop, and QUEUE
to the appropriate routing queue depending on if during a live workshop session (gpuworkshop),
during weekday 8am to 5:30pm MT (gpudev), or all other times (casper). Due to limited shared
GPU resources, please use GPU_TYPE=gp100 during the workshop. Otherwise, set GPU_TYPE=v100
(required for gpudev) for independent work. See Casper queue documentation for more info.

[]: export PROJECT=UCIS0004
export QUEUE=gpudev
export GPU_TYPE=v100

module load nvhpc/22.5 openmpi &> /dev/null
export PNETCDF_INC=/glade/u/apps/dav/opt/pnetcdf/1.12.3/openmpi/4.1.4/nvhpc/22.
↪→5/include

export PNETCDF_LIB=/glade/u/apps/dav/opt/pnetcdf/1.12.3/openmpi/4.1.4/nvhpc/22.
↪→5/lib

1.2 What is a Profiler?

Profilers are tools that samples and measure performance characteristics of an executable across its
runtime. This information is intended to aid program optimization and performance engineering.

Profiler software that are supported at NCAR include Arm Map, Nsight Systems, and Nsight
Compute. All of these tools are able to analyze GPU code. Other profilers you may be aware of
include TAU, Intel VTune Advisor, HPC Toolkit, and Vampir.

Today, we will focus on the NVIDIA Nsight profiling tools and usage techniques of these tools.

• Nsight Systems - Provides a high level runtime and trace analysis of the program runtime
via a measured timeline of various metrics and GPU kernels across a program.

• Nsight Compute - Provides an in depth level assessment of individual GPU kernel perfor-
mance and how various GPU resources are utilized across many different metrics.

2

https://arc.ucar.edu/knowledge_base/72581396#StartingCasperjobswithPBS-Concurrentresourcelimits

Nsight Systems (left) shows a timeline of code runtime.

Nsight Compute (right) records and presents extensive performance statistics for individual kernels.

1.3 Profiling Documentation Resources

NVIDIA provides extensive documentation for each of these profilers. We will go over basic usage
of these tools but to learn more and get the most out of Nsight, consult the below resources:

• Nsight Systems Main Documentation
• Nsight Compute Main Documentation
• Nsight Compute Profiling Guide
• Nsight Compute Training Resources - Forum, Videos, and Blog Posts curated by NVIDIA

An excellent interactive step-by-step tutorial given by Max Katz (NVIDIA) using Nsight Compute
to optimize an OpenACC kernel in the BerkeleyGW many-body perturbation theory software can
be found at this Gitlab repository. A recorded video on this material is here.

Additionally, the CLI help pages via the -h flag for each profiler is a useful quick reference point.
Run the below cells to view them.

[]: ncu -h

3

https://docs.nvidia.com/nsight-systems
https://docs.nvidia.com/nsight-compute/
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://docs.nvidia.com/nsight-compute/Training/index.html
https://gitlab.com/NERSC/roofline-on-nvidia-gpus
https://www.youtube.com/watch?v=fsC3QeZHM1U

1.4 Profiling Workflow

When assessing performance of software, first profile the overall program with Nsight Systems.
Then, expensive kernels can be identified and profiled using Nsight Compute.

Iteratively analyze and modify code to optimize performance, up to the amount of effort is worth-
while.

1.5 Nsight Compute

After getting a sense of the overall performance of your program with Nsight Systems, use Nsight
Compute to dive deeper into the performance of individual GPU kernels.

• CUDA kernel profiler (or CUDA kernels generated by OpenACC/OpenMP/Kokkos code)
• Curates performance statistics into targeted metrics sections
• Able to select amount of data to collect and how it’s presented

– More detailed analysis has greater overhead with profiler usage
• Fully featured Command Line and User Friendly GUI interfaces
• Regularly updated and customizable Python based rules for guided analysis and post-

processing

4

1.6 Preparing Code for Nsight Compute

When preparing code for Nsight Compute, an important compile option to add is -gpu=lineinfo.
DON’T USE -pg, -g, or -G flags. The lineinfo flag allows the Source/SASS analysis section
of Nsight Compute correlate performance information with specific lines of CUDA and/or Ope-
nACC/OpenMP code.

Use the below cell to compile and re-compile MiniWeather after code changes are made. You may
also modify the runtime parameters, grid size, and simulation time to investigate how different
problem sizes impact performance. Review the generated GPU kernel specifications from the
-Minfo=acc output.

[]: export OPENACC_FLAGS="-acc -gpu=cc60,cc70,lineinfo"

mpif90 -I${PNETCDF_INC} -Mextend -O0 -DNO_INFORM -c miniWeather_mpi_openacc.F90␣
↪→-o miniWeather_mpi_openacc.F90.o \

-D_NX=9192 -D_NZ=4096 -D_SIM_TIME=0.1 -D_OUT_FREQ=2.0␣
↪→-D_DATA_SPEC=DATA_SPEC_THERMAL ${OPENACC_FLAGS} -Minfo=acc

mpif90 -Mextend -O3 miniWeather_mpi_openacc.F90.o -o openacc -L${PNETCDF_LIB}␣
↪→-lpnetcdf ${OPENACC_FLAGS}

rm -f miniWeather_mpi_openacc.F90.o

Notably, only a short simulation time (enough to cover a few timesteps) is required for us to
effectively analyze and optimize model performance.

1.7 Nsight Compute CLI Options

• -o <report-name> - Writes output to a *.ncu-rep file to analyze via GUI
– Without -o, analysis is summarized in stdout.

• -f - Force overwrite of output files
• -c or --launch-count - Specifies the number of kernel launches to profile. Otherwise, all

launched kernels are profiled
• -s or --launch-skip - Skips a specified number of kernel launches. Useful for letting the

GPU “warm-up”

5

• --set <arg> - Sets the amount of data collected and kernel metrics measured, i.e. detailed,
full, or others given from --list-sets flag

– More data collected requires more redundant runs of GPU kernels and increases profiler
overhead

• -k or --kernel-name - Specifies the exact name (see nsys) of kernels to be profiled
– Use -k regex:<expression> to filter kernels by a regex expression

• --nvtx - Enables support for NVTX ranges
• --nvtx-include arg - Filters profiled kernels based on NVTX ranges
• --import-source on - Imports CUDA/source code directly into the report.

1.8 Generate Nsight Compute Report

Start with the final version of miniWeather_mpi_openacc.F90. As we analyze performance, use
the generated report to inform code optimizations to experiment with.

First, use the submit script ncu_bash.sh to run Nsight Compute on MiniWeather by running
command ncu <ncu options> <exec> <exec arguments>. Useful ncu options are listed above
but also may be reviewed via ncu -h.

The first profile run of MiniWeather will profile all kernels using --sets full in order to make
a baseline (requires redundantly running kernels 73-74 times). When changing code, modify the
report filename when you re-run the below cell to help you keep track of reports between different
code versions.

[]: qsub -q $QUEUE -l gpu_type=$GPU_TYPE -A $PROJECT -v NCU_REPORT="MW_DivToMult"␣
↪→ncu_bash.sh

SHIFT + right click MW_baseline.ncu-rep in order to save the Nsight Compute report to your
personal machine (or download the file from the left pane explorer). Install a free local Nsight
Compute client to open the file. Alternatively, after setting module load nvhpc, you can run
ncu-ui <report-name> over a terminal X session or VNC/FastX session on Casper.

1.9 Analysis of Nsight Compute Profiles

Depending on the option chosen for --set and number of metrics measured, the kernel profiling
report will contain a selection of different sections for review covering performance metrics of each
kernel profiled.

When using the GUI, guided analysis as alerted via exclamation point warning signs will suggest
specific issues the profiler identifies and tries to suggest solutions. These are automatically triggered
Python rules written by Nsight Compute maintainers and experts, which can be further customized
or added to. If you need help interpretting this information, hover your mouse over a piece of
information and an informative text box will appear to explain.

Below, we review a few important sections.

6

miniWeather_mpi_openacc.F90
ncu_bash.sh
MW_baseline.ncu-rep
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute

1.10 Nsight Compute - GPU Speed of Light

The GPU Speed of Light section highlights to what percentage is this kernel using the full capability
of the GPU, both in terms of Streaming Multiprocesser (SM) occupancy and Memory Throughput.

1.11 Nsight Compute - Roofline Analysis

With at least --set detailed, a roofline plot is generated, used to determine if the kernel is com-
pute bound or memory bound. Measurements are plotted as points, where distance from the
roofline indicates potential for improvement at a given kerne;’s arithmentic intensity, calcula-
tions per total size of data loads and stores.

Memory bound kernels can perhaps benefit by assigning more compute operations per thread if
possible. Compute bound kernels will likely require further analysis for optimization, typically by
checking for warp stalls or coallesced memory issues.

7

1.12 Nsight Compute - Memory Workload Analysis

This section provides a detailed analysis of the memory resources of the GPU. In this case, Nsight
Compute identifies that there is an imbalance of data movement between the L1 and L2 caches due
to uncoalesced memory. To improve this, memory access patterns need to be re-designed within
the source code and OpenACC kernel.

1.13 Nsight Compute - Source/SASS and Instruction Hotspots

Navigated to via the Source Counters section, a heatmap of resource usage and other metrics
can be correlated to specfic lines of code within the source files. This can more easily identify which
specific areas of your program are causing poor performance.

8

1.14 Nsight Compute - Add a Baseline

Whenever profiling a program or specific kernel, it is vitally important to record and set a baseline
to reference performance changes against. In Nsight Compute, set a baseline by clicking Add
Baseline near the top of the main window within the Nsight Compute GUI. Note, you can add
multiple “baselines” from multiple reports.

Rename a baseline by clicking the Baseline # text label.

Now, open the new profile report or switch to the other tab referencing this report. The baseline
performance metrics will now be displayed and compared to the new current report’s performance
metrics.

9

1.15 Experiment with a Proposed Optimization - Replace Divide with Multiply

Noting the hotspot at line 288, we can assess if there’s a way to re-formulate this line to either
reduce redundant operations or refactor the overall algorithm. The metrics provided may be able
to provide a hint towards why this line is a bottleneck for MiniWeather.

In this case, there are a significant number of warp stalls (see here for descriptions of types of warp
stalls) as well as a much higher number of instructions executed compared to other lines in this
kernel. Looking at this line, we see multiple divisions by 12 that could be simplified. Additionally,
division is typically more expensive than multiplication within IEEE computational arithmetic.

Thus, let’s try changing this line to vals(ll) = (-stencil(1) + 7*stencil(2) + 7*stencil(3)
- stencil(4))*0.083333333333333333. The report that analyses this change is MW_DivToMult.
ncu-rep.

10

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#statistical-sampler
MW_DivToMult.ncu-rep
MW_DivToMult.ncu-rep

1.16 EXERCISE - Adjust MiniWeather Problem Size and Other Optimizations

Adjust MiniWeather’s problem size using the values nx=128,512,1024,2048,4096,9192 with
nz=nx/2. Try more problem sizes if interested. Generate ncu reports for each of these problem
sizes.

Then, open up all the reports and add each one as a named baseline for that problem size. Compare
performance between problem sizes.

1. Describe the performance for small problem sizes? What is the SM utilization
and memory throughput for small problems?

2. Is there an optimal problem size?
3. Do performance or other metrics stop changing after a certain order of magnitude

for the problem size?
4. Experiment with and attempt other optimizations/code changes to improve MiniWeather’s

performance. What other ways or styles of refactoring might you try to improve
performance?

1.17 Resources

• Nsight Systems Main Documentation
• Nsight Compute Main Documentation
• Nsight Compute Profiling Guide
• Nsight Compute Training Resources - Forum, Videos, and Blog Posts curated by NVIDIA
• Introduction to Kernel Performance Analysis with NVIDIA Nsight Compute, Max Katz

(NVIDIA invited to Argonne/NERSC)
– GitLab repo and video

11

https://docs.nvidia.com/nsight-systems
https://docs.nvidia.com/nsight-compute/
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://docs.nvidia.com/nsight-compute/Training/index.html
https://gitlab.com/NERSC/roofline-on-nvidia-gpus
https://www.youtube.com/watch?v=fsC3QeZHM1U

1.18 Return to Nsight Systems Profiler Tool

Nsight Systems Profiler

12

../nsys/10_HandsOnNsight_nsys.ipynb

	Workshop Etiquette
	Notebook Setup
	What is a Profiler?
	Profiling Documentation Resources
	Profiling Workflow
	Nsight Compute
	Preparing Code for Nsight Compute
	Nsight Compute CLI Options
	Generate Nsight Compute Report
	Analysis of Nsight Compute Profiles
	Nsight Compute - GPU Speed of Light
	Nsight Compute - Roofline Analysis
	Nsight Compute - Memory Workload Analysis
	Nsight Compute - Source/SASS and Instruction Hotspots
	Nsight Compute - Add a Baseline
	Experiment with a Proposed Optimization - Replace Divide with Multiply
	EXERCISE - Adjust MiniWeather Problem Size and Other Optimizations
	Resources
	Return to Nsight Systems Profiler Tool

