
Tools for GPU Debugging and Profiling

June 02, 2022

Rory Kelly
Consulting Services

Overview

Debugging Tools

• printf
• compute-sanitizer
• environment variables
• cuda-gdb
• ARM Forge(DDT)

Profiling Tools

• NVIDIA NSight (nv-nsight-cu-cli)
• ARM MAP

GPU Debugging and Profiling

Types of Bugs

The type of bug you have will have an impact on how you approach debugging it.

- Does it cause a program crash?
- Does it cause you to get incorrect results?
- Does it do either of the above, but only intermittently?
- Does it disappear when you try to look at it?

Think about what the nature of your bug may be telling you to guide your debugging
approach.

GPU Debugging and Profiling

Before using a Debugger

There are a few easy to use debugging tools you may want to try
before resorting to a debugger

• Using printf (available from within a GPU kernel)
• Setting environment variables
• NVIDIA compute-sanitizer tool

– Out of bounds or mis-aligned memory access (global, local, shared)
– Race conditions (shared memory only)
– Uninitialized access (global memory only)
– Synchronization primitives

GPU Debugging and Profiling

Hail printf(), Long May It Reign
• The printf function can be called from within a kernel region
• Each thread can print local state from the device
• Can be an overwhelming amount of output, so helpful to have an idea of

where a problem is occurring
• Serialization may change or remove your bug! (useful info)

__global__ void unsafe_inc(int *a_d){
 ...
 if (blockIdx.x == 99 && threadIdx.x >= 16 && threadIdx.x < 32){
 printf("Block x %d, Thread x: %d Value of a: %d\n",
 blockIdx.x, threadIdx.x, a_d[idx]);
 }
 ...
}

GPU Debugging and Profiling

Environment Variables for OpenACC
NV_ACC_NOTIFY=<1 for kernel launches, 2 for data xfer, 3 for both>
...
upload CUDA data
file=/glade/work/rory/GPU-tut/c-openacc-prof/miniWeather_mpi_openacc.cpp
function=_Z10reductionsRdS_ line=869 device=0 threadid=1 variable=te_loc bytes=8
launch CUDA kernel
file=/glade/work/rory/GPU-tut/c-openacc-prof/miniWeather_mpi_openacc.cpp
function=_Z10reductionsRdS_ line=869 device=0 threadid=1 num_gangs=625
num_workers=1 vector_length=128 grid=625 block=128 shared memory=2048
...

NV_ACC_DEBUG=1
- Info on devices, launches, function arguments
- Can be an overwhelming amount of output that you’ll need to sedawkgrep your

way through
- Location where output stops for a crashing bug can be helpful

GPU Debugging and Profiling

An Example CUDA Bug - Array Bounds

// buggy kernel will write one element off the end of c_d
__global__ void boundsBugAdd (int *a_d, int *b_d, int *c_d)
{
 int x = blockIdx.x * blockDim.x + threadIdx.x;
 c_d[x+1] = a_d[x] + b_d[x];
}

called as:
arraySize=64;
boundsBugAdd <<<ceil((float) arraySize/32),32>>> (a_d, b_d, c_d);

Expect that last thread in last block will write out of bounds

GPU Debugging and Profiling

An Example CUDA Bug - Array Bounds

With arrays initialized as:
for (i=0; i < 64; i++){
 a[i] = i+1;
 b[i] = -(i+1);
 c[i] = -1;
}

> ./boundsBug.exe
Result:
-1 0
0 0

As expected: first array element not updated, presumably an out of bounds write
on the GPU, and no crash.

GPU Debugging and Profiling

An Example CUDA Bug - Array Bounds

Use compute sanitizer

> compute-sanitizer --tool memcheck ./boundsBug.exe
========= COMPUTE-SANITIZER
========= Invalid __global__ write of size 4 bytes
========= at 0x560 in boundsBug.cu:10:boundsBugAdd(int *, int *, int *)
========= by thread (31,0,0) in block (1,0,0)
========= Address 0x2b6beda00500 is out of bounds
========= Saved host backtrace up to driver entry point at kernel launch time
========= Host Frame: [0x21740c]
========= in /lib64/libcuda.so
========= Host Frame: [0x87eb]
========= in
/glade/work/rory/GPU-tut/boundsBug.cuda/./boundsBug.exe
...

GPU Debugging and Profiling

An Example CUDA Bug - Race Condition

// buggy kernel has a shared memory race condition
__global__ void unsafe_inc(int *a_d){
 __shared__ int s;
 s = *a_d;
 s += 1;
 *a_d = s;
}

called as:
unsafe_inc<<<1000,1000>>>(a_d);

Expect that last a_d will end up with value < 1e6, due to the race condition

GPU Debugging and Profiling

An Example CUDA Bug - Race Condition
> ./race-cond.exe
GPU Time elapsed: 0.000082 seconds
a = 16
> ./race-cond.exe
GPU Time elapsed: 0.000077 seconds
a = 12

Use compute sanitizer
> compute-sanitizer --tool=racecheck ./race-cond.exe
========= COMPUTE-SANITIZER
========= ERROR: Race reported between Write access at 0x270 in race-cond.cu:18:unsafe_inc(int *)
========= and Write access at 0x1c0 in race-cond.cu:17:unsafe_inc(int *) [1 hazards]
========= and Read access at 0x210 in race-cond.cu:18:unsafe_inc(int *) [6732 hazards]
========= and Write access at 0x270 in race-cond.cu:18:unsafe_inc(int *) [987 hazards]
========= and Read access at 0x2c0 in race-cond.cu:19:unsafe_inc(int *) [17032 hazards]
...

GPU Debugging and Profiling

Debuggers - when you must

If you haven’t been able to find a bug with simpler methods, it may by time to
use a debugger.

There are a few options available, and we’ll talk about two today:
- cuda-gdb
- ARM Forge

Neither is perfect, but can provide additional insight into your code

Both seem to work better with CUDA codes than with OpenACC generated
kernels.

GPU Debugging and Profiling

Debuggers - compiling for debugging

CUDA Flags:
-O3 -g -G or
-O0 -g -G

OpenACC
-O3 -g -acc=gpu -gpu=cc70,debug,nordc or
-O0 -g -acc=gpu -gpu=cc70,debug,nordc

may be interesting to keep generated kernels with
-gpu=...,keepgpu

GPU Debugging and Profiling

CUDA-GDB

The same gdb you are familiar with, including all the same CPU-side
capabilities, but extended to work on NVIDIA GPUs and CUDA code.

Fairly feature rich, but usefulness of the tools depends on the nature of your
bug. More useful for CUDA, has some limitations for OpenACC.

Can work through the CLI or from within an IDE.

Uses /tmp by default, but respects $TMPDIR environment variable, which you
can point to /glade/scratch/$USER/tmp or similar

https://docs.nvidia.com/cuda/cuda-gdb/index.html

GPU Debugging and Profiling

CUDA-GDB

Can’t cover all the features today, but a quick way to get info on CUDA
specific functionality is to start cuda-gdb, and then type

cuda <tab> ← commands for showing and selecting current focus
block device grid kernel lane sm thread warp

These are the software/hardware views of the currently executing focus. You
can also use these commands to switch the current focus.

help <command> (e.g. help cuda thread) for more info.

GPU Debugging and Profiling

CUDA-GDB

set cuda <tab> ← commands to control debug behavior

api_failures disassemble_per notify
break_on_launch gpu_busy_check ptx_cache
coalescing hide_internal_frame single_stepping_optimizations
collect_stats kernel_events software_preemption
context_events kernel_events_depth stop_signal
launch_blocking thread_selection disassemble_from
memcheck value_extrapolation
device_resume_on_cpu_dynamic_function_call

help <command> (e.g. help set cuda break_on_launch) for more info.

GPU Debugging and Profiling

CUDA-GDB - memcheck
> cuda-gdb ./boundsBug.exe

(cuda-gdb) set cuda memcheck on
(cuda-gdb) run

Thread 1 "boundsBug.exe" received signal CUDA_EXCEPTION_1, Lane Illegal Address.
[Switching focus to CUDA kernel 0, grid 1, block (1,0,0), thread (31,0,0), device 0, sm 2,
warp 0, lane 31]
0x0000000001132e60 in boundsBugAdd<<<(2,1,1),(32,1,1)>>> (a_d=0x2aab04400000,
b_d=0x2aab04400200, c_d=0x2aab04400400) at boundsBug.cu:10
10 c_d[x+1] = a_d[x] + b_d[x];

(cuda-gdb) list
5
6 // buggy kernel will write one element off the end of c_d
7 __global__ void boundsBugAdd (int *a_d, int *b_d, int *c_d)
8 {
9 int x = blockIdx.x * blockDim.x + threadIdx.x;
10 c_d[x+1] = a_d[x] + b_d[x];
11 }

GPU Debugging and Profiling

CUDA-GDB - breakpoints
(cuda-gdb) list 6,11
6 // buggy kernel will write one element off the end of c_d
7 __global__ void boundsBugAdd (int *a_d, int *b_d, int *c_d)
8 {
9 int x = blockIdx.x * blockDim.x + threadIdx.x;
10 c_d[x+1] = a_d[x] + b_d[x];
11 }

- Break at line N in current file: break N
- Break at line N in named file: break file:N
- Break on function/kernel name: break <name>
- Break on kernel launch: set cuda break_on_launch [none,all,application,system]

So, in this specific case, these commands would be equivalent:
(cuda-gdb) break 9
(cuda-gdb) break boundsBug:9
(cuda-gdb) break boundsBugAdd
(cuda-gdb) set cuda break_on_launch application

GPU Debugging and Profiling

CUDA-GDB - focus
Reading symbols from boundsBug.exe...
(cuda-gdb) set cuda break_on_launch application
(cuda-gdb) run

[Switching focus to CUDA kernel 0, grid 1, block (0,0,0), thread (0,0,0), device 0, sm 0, warp 0,
lane 0]
boundsBugAdd<<<(2,1,1),(32,1,1)>>> (a_d=0x2aab03a00000, b_d=0x2aab03a00200,
c_d=0x2aab03a00400) at boundsBug.cu:9
9 int x = blockIdx.x * blockDim.x + threadIdx.x;

(cuda-gdb) cuda block thread
block (0,0,0), thread (0,0,0)

GPU Debugging and Profiling

CUDA-GDB - focus
(cuda-gdb) step
10 c_d[x+1] = a_d[x] + b_d[x];
(cuda-gdb) p x
$2 = 0

(cuda-gdb) cuda block(1,0,0) thread(31,0,0)
[Switching focus to CUDA kernel 0, grid 1, block (1,0,0), thread (31,0,0), device 0, sm 2, warp 0,
lane 31]
9 int x = blockIdx.x * blockDim.x + threadIdx.x;

(cuda-gdb) step
10 c_d[x+1] = a_d[x] + b_d[x];
(cuda-gdb) p x
$3 = 63

GPU Debugging and Profiling

CUDA-GDB - examining local state
> cuda-gdb ./test_voigt

(cuda-gdb) list voigt.cu:66,94
66 Z1_real = A6 * damping + A5;
67 Z1_imag = A6 * -V;
68 Z2_real = Z1_real * damping - Z1_imag * -V + A4;
69 Z2_imag = Z1_real * -V + Z1_imag * damping;
70 Z3_real = Z2_real * damping - Z2_imag * -V + A3;
71 Z3_imag = Z2_real * -V + Z2_imag * damping;
72 Z4_real = Z3_real * damping - Z3_imag * -V + A2;
73 Z4_imag = Z3_real * -V + Z3_imag * damping;
74 Z5_real = Z4_real * damping - Z4_imag * -V + A1;
75 Z5_imag = Z4_real * -V + Z4_imag * damping;
76 Z6_real = Z5_real * damping - Z5_imag * -V + A0;
77 Z6_imag = Z5_real * -V + Z5_imag * damping;
78 ZZ1_real = damping + B6;
79 ZZ1_imag = -V;

GPU Debugging and Profiling

(list continued)

80 ZZ2_real = ZZ1_real * damping - ZZ1_imag * -V + B5;
81 ZZ2_imag = ZZ1_real * -V + ZZ1_imag * damping;
82 ZZ3_real = ZZ2_real * damping - ZZ2_imag * -V + B4;
83 ZZ3_imag = ZZ2_real * -V + ZZ2_imag * damping;
84 ZZ4_real = ZZ3_real * damping - ZZ3_imag * -V + B3;
85 ZZ4_imag = ZZ3_real * -V + ZZ3_imag * damping;
86 ZZ5_real = ZZ4_real * damping - ZZ4_imag * -V + B2;
87 ZZ5_imag = ZZ4_real * -V + ZZ4_imag * damping;
88 ZZ6_real = ZZ5_real * damping - ZZ5_imag * -V + B1;
89 ZZ6_imag = ZZ5_real * -V + ZZ5_imag * damping;
90 ZZ7_real = ZZ6_real * damping - ZZ6_imag * -V + B0;
91 ZZ7_imag = ZZ6_real * -V + ZZ6_imag * damping;
92 division_factor = 1.0f / (ZZ7_real * ZZ7_real + ZZ7_imag
 * ZZ7_imag);
93 ZZZ_real = (Z6_real * ZZ7_real + Z6_imag * ZZ7_imag)
 * division_factor;
94 voigt_value[idx] = ZZZ_real;

CUDA-GDB - examining local state
(cuda-gdb) break voigt.cu:94
Breakpoint 1 at 0x405c0a: file voigt.cu, line 95.
(cuda-gdb) run

Thread 1 "test_voigt" hit Breakpoint 1, my_voigt<<<(8192,256,1),(32,1,1)>>>
(damp_arr=0x2aab2e000000, offs_arr=0x2aab3e000000,
 voigt_value=0x2aab4e000000) at voigt.cu:94
94 voigt_value[idx] = ZZZ_real;

(cuda-gdb) step
95 }

At this point there are a number of commands to get full info on available local state
- info locals
- backtrace full
- print <variable>
- print <some arithmetic combination of variables>
- …

GPU Debugging and Profiling

CUDA-GDB - examining local state
(cuda-gdb) backtrace full
#0 my_voigt<<<(8192,256,1),(32,1,1)>>> (damp_arr=0x2aab2e000000, offs_arr=0x2aab3e000000,
voigt_value=0x2aab4e000000) at voigt.cu:95
 Z1_real = 11.5567265
 ZZ1_real = 20.4837646
 ZZ3_real = -1291.85046
 Z6_imag = 6668691.5
 ZZ6_imag = 11803426
 division_factor = 2.71227659e-17
 damping = 10.0039062
 Z1_imag = -5.64410019
 Z2_real = 89.3294983
 Z4_real = -33328.1367
 ...
 Z5_imag = 145220.266
 Z6_real = -3763029
 ZZ5_imag = 255083.594
 ZZ6_real = -6699409.5
 ZZ7_imag = 185100640
 idx = 0
 ivsigno = 1

GPU Debugging and Profiling

CUDA-GDB - examining local state
(cuda-gdb) print V
$4 = 10.0039062

(cuda-gdb) print offset
$5 = 10.0039062

(cuda-gdb) print V - offset
$6 = 0

(cuda-gdb) print V / offset
$7 = 1

GPU Debugging and Profiling

CUDA-GDB - watchpoints
> cuda-gdb ./test_voigt
(cuda-gdb) run

Thread 1 "test_voigt" hit Breakpoint 1, my_voigt<<<(8192,256,1),(32,1,1)>>>
(damp_arr=0x2aab2e000000, offs_arr=0x2aab3e000000,
 voigt_value=0x2aab4e000000) at voigt.cu:66

(cuda-gdb) watch Z1_imag if Z1_imag < 0.0
Watchpoint 2: Z1_imag
(cuda-gdb) continue
Continuing.

Thread 1 "test_voigt" hit Watchpoint 2: Z1_imag

Old value = 0
New value = -5.64410019
my_voigt<<<(8192,256,1),(32,1,1)>>> (damp_arr=0x2aab2e000000, offs_arr=0x2aab3e000000,
voigt_value=0x2aab4e000000) at voigt.cu:68
68 Z2_real = Z1_real * damping - Z1_imag * -V + A4;

GPU Debugging and Profiling

CUDA-GDB - Sometimes problematic with OpenACC

> cuda-gdb matrix_mult.exe
(cuda-gdb) set cuda break_on_launch application
(cuda-gdb) run
Starting program: /glade/work/rory/GPU-tut/f90-mmul/matrix_mult.exe[Switching
focus to CUDA kernel 0, grid 1, block (0,0,0), thread (0,0,0), device 0, sm 0,
warp 0, lane 0]
cuda-gdb/10.1/gdb/cuda/cuda-regmap.c:703: internal-error: regmap_st*
regmap_table_search(objfile*, const char*, const char*, uint64_t): Assertion
`func_name' failed.
A problem internal to GDB has been detected,
further debugging may prove unreliable.

Quit this debugging session? (y or n)
y
Create a core file of GDB? (y or n)
n

GPU Debugging and Profiling

CUDA-GDB - Sometime problematic with OpenACC

- Seems particularly prone to issues with Fortran + OpenACC, at least the core-dump
issues

- Sometimes setting breakpoints, or printing state also seems unreliable for OpenACC
codes, for C++ and Fortran both

- May still be worth trying, but might want to have a backup plan

GPU Debugging and Profiling

ARM Forge/DDT

In addition to being a scalable MPI and OpenMP debug tool for CPU codes,
DDT is also able to debug on NVIDIA GPUs, including both CUDA and
OpenACC codes.

Works a bit better for OpenACC codes (esp Fortran) vs cuda-gdb.

Many similar capabilities to cuda-gdb. The primary interface is a GUI, which
you either like or don’t, but as GUI tools in HPC go, it’s pretty good.

We have full documentation on getting it set up at NCAR
https://arc.ucar.edu/knowledge_base/72581460

GPU Debugging and Profiling

https://arc.ucar.edu/knowledge_base/72581460

ARM Forge/DDT - Revisiting Fortran OpenACC
> forge --connect ./matrix_mult.exe

GPU Debugging and Profiling

GPU Debugging and Profiling

GPU Debugging and Profiling

GPU Debugging and Profiling

Also has similar memory
debugging capabilities

Debugger Debrief - General Advice
- If you are already familiar with either GDB or DDT, both are able to debug

GPU code, start with the tool you are familiar with.

- If you have Fortran OpenACC code, I would probably skip cuda-gdb for
the time being.

- Before relying on either debugger you can try some other approaches
- Checking error return codes
- Setting debug environment variables
- Using compute-sanitizer
- Realizing it’s ok to use printf()
- For OpenACC, target the CPU and debug off the GPU

GPU Debugging and Profiling

A Brief Word on Profiling
Both NVIDIA and ARM Forge toolchains include profiling and optimization tools
as well.

Future GPU Workshop session will dive deeper on the NVIDIA NSight tool,
particularly the GUI version, but the CLI version is also quite useful.

Using ARM Forge/MAP shares launch method and interface with DDT, so it
should be a small leap for existing DDT users.

GPU Debugging and Profiling

NSight CLI
- Many options, including sampling only certain kernels, attaching remotely, running in batch,

output format, sampling frequency, amount of detail, …
- Try nv-nsight-cu-cli --help for details
- Example of basic usage: profiling the OpenACC version of the miniWeather application

> nv-nsight-cu-cli --launch-count=100 --launch-skip=1 ./mw_openacc
==PROF== Connected to process 136370
(/glade/work/rory/GPU-tut/c-openacc-prof/build/mw_openacc)
==PROF== Profiling "_Z23reductions_869_gpu__redRdS_" - 1 of 100: 0%....50%....100%
- 19 passes
==PROF== Profiling "_Z25set_halo_values_x_408_gpuPd" - 2 of 100: 0%....50%....100%
- 19 passes
==PROF== Profiling "_Z25set_halo_values_x_431_gpuPd" - 3 of 100: 0%....50%....100%
- 19 passes
...

GPU Debugging and Profiling

NSight CLI -- Example Report
_Z28compute_tendencies_z_379_gpuPdS_S_d, 2022-Jun-01 23:52:50, Context 1, Stream 14
 Section: GPU Speed Of Light Throughput
 --- --------------- -------------------------
 DRAM Frequency cycle/usecond 608.42
 SM Frequency cycle/usecond 880.03
 Elapsed Cycles cycle 10,633
 Memory [%] % 44.35
 DRAM Throughput % 42.92
 Duration usecond 12.06
 L1/TEX Cache Throughput % 38.40
 L2 Cache Throughput % 44.35
 SM Active Cycles cycle 8,132.10
 Compute (SM) [%] % 36.98
 --- --------------- -------------------------
 WRN This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak
 performance of this device. Achieved compute throughput and/or memory bandwidth below 60.0% of peak typically
 indicate latency issues. Look at Scheduler Statistics and Warp State Statistics for potential reasons.

GPU Debugging and Profiling

NSight CLI -- Example Report
Section: Launch Statistics
 --- --------------- -------------------------
 Block Size 128
 Function Cache Configuration cudaFuncCachePreferNone
 Grid Size 2,500
 Registers Per Thread register/thread 44
 Shared Memory Configuration Size byte 0
 Driver Shared Memory Per Block byte/block 0
 Dynamic Shared Memory Per Block byte/block 0
 Static Shared Memory Per Block byte/block 0
 Threads thread 320,000
 Waves Per SM 3.12
 --- --------------- -------------------------
 WRN A wave of thread blocks is defined as the maximum number of blocks that can be executed in parallel on
 the target GPU. The number of blocks in a wave depends on the number of multiprocessors and the theoretical
 occupancy of the kernel. This kernel launch results in 3 full waves and a partial wave of 100 thread blocks.
 Under the assumption of a uniform execution duration of all thread blocks, the partial wave may account for
 up to 25.0% of the total kernel runtime with a lower occupancy of 27.8%. Try launching a grid with no partial
 wave. The overall impact of this tail effect also lessens with the number of full waves executed for a grid.

GPU Debugging and Profiling

NSight CLI -- Example Report
Section: Occupancy
 --- --------------- -------------------------
 Block Limit SM block 32
 Block Limit Registers block 10
 Block Limit Shared Mem block 32
 Block Limit Warps block 16
 Theoretical Active Warps per SM warp 40
 Theoretical Occupancy % 62.50
 Achieved Occupancy % 45.15
 Achieved Active Warps Per SM warp 28.90
 --- --------------- -------------------------
 WRN This kernel's theoretical occupancy (62.5%) is limited by the number of required registers The difference
 between calculated theoretical (62.5%) and measured achieved occupancy (45.2%) can be the result of warp
 scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur
 between warps within a block as well as across blocks of the same kernel.

GPU Debugging and Profiling

ARM Forge/MAP

Uses reverse connect to launch
the same way as DDT

> module load arm-forge/22.0.2
> map --connect ./mw_openacc

GPU Debugging and Profiling

Click to add footer

Profiling Summary
Just a quick overview of profiling tools. As mentioned, future session will focus on the
NVIDIA profiling tools in more depth.

If you want more help with either of these tools, feel free to reach out to CSG and we
can assist you. We will likely have future vendor provided trainings on these and other
tools, and such trainings will be announced in many channels, including to this group.

Questions?
Now? ←→ At the end? ←→ Offline?

Thanks

GPU Debugging and Profiling

Integrated Developer Environments:
Eclipse Parallel Tools Platform

GPU Development with
NSight Eclipse Edition

June 2nd, 2022

Daniel Howard,
HPC Consultant, Consulting Services Group CISL

Why Use an Integrated Developer Environment (IDE)?

• Auto managed
build process

• Remotely run &
synchronized code

• Syntax highlighting
& autocompletion

• More robust &
intuitive debugging

• Explore project &
jump to functions

• Customizable &
other features

Getting Eclipse PTP and Nsight Eclipse Plugin

1. Download Eclipse at eclipse.org/downloads (Requires Java JDK)
Suggest use Parallel Tools Platform (PTP) project (Select “Eclipse IDE for Scientific Computing”)

2. Install CUDA Toolkit (no local GPU required)
Mac Users: OSX CUDA Toolkit incomplete and not needed

3. Find the NSight Eclipse Edition Plugins to interface with CUDA tools
in CUDA Toolkit install (e.g. /glade/u/apps/dav/opt/cuda/11.4.0/nsightee_plugins/)
or for Mac, direct link zip file

Alternate IDE options for NSight tools and CUDA debugging are available via
Visual Studio Code Edition (currently better support for Mac users)

 4 min GTC talk & 36 min GTC talk on VS Code if interested

Note: Mac OS 10.8+ does NOT support direct running of most CUDA tools.
Must use remote development!

https://www.eclipse.org/downloads/
https://www.oracle.com/java/technologies/downloads/
https://www.eclipse.org/ptp/
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/nvidia-cuda-toolkit-11_7_0-developer-tools-mac-hosts
https://docs.nvidia.com/cuda/nsightee-plugins-install-guide/index.html
https://drive.google.com/file/d/1BXvQFNrx8OapTV2qFbR6rmLd5UkFoBhW/view?usp=sharing
https://marketplace.visualstudio.com/items?itemName=NVIDIA.nsight-vscode-edition
https://www.nvidia.com/en-us/on-demand/session/iscdigital2021-iscd2109/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31884/

Install the NSight Eclipse Edition Plugins into Your Eclipse

1. Open Eclipse and Select “Help” -> “Install New Software…”
2. Click “Add…” and name the repo plus click “Archive…” to select location

of NSight EE plugins
3. Click “Add”
4. Select checkbox for

“CUDA Main Features”
5. Click “Finish”
6. Agree to Terms, etc…

NSight Eclipse Edition primarily offers
support for C/C++ code and interfacing
with CUDA tools

Thus, plugin is most useful for CUDA
code but has some utility for OpenACC

Next slides show using Eclipse with
Casper/Cheyenne

Add Casper Remote Connection to Eclipse

1. Use “New Synchronized
Project” Wizard
or navigate to “Remote
Development > Remote
Connections” in
“Preferences”

2. Input casper.ucar.edu in
Host field

3. Select “Password based
authentication” and
leave field blank for
interactive login
a. 2FA with Duo does

not allow saving
password here

Configuring and Usage of Eclipse IDE

Add Casper Remote Development Project to Eclipse
Use Synchronized project with
git to sync files between local and
remote on GLADE.

1. Select “New Project” icon
or use right click menu in
“Project Explorer” pane

2. Select “Synchronized
Fortran Project” (or similar
based on type of project)

3. Name your project and
specify previously setup
Remote connection and
directory
a. Can use a new or in

place directory
4. If there are files you want to

pull from GLADE, right click
project and “Synchronize >
Sync Active Now”

Configuring and Usage of Eclipse IDE

Setup Remote Builds on Casper from Eclipse

Configuring and Usage of Eclipse IDE

In the properties of your new project, you
can define the build environment and
required modules for your project.

1. Right click project, select “Properties”
2. Go to “Synchronize”
3. Check “Use an environment

management system…”
4. Add and remove modules and order

to load them

5. Select “Fortran Build” (or relevant
build option)

6. Configure calls to make or compilers
depending on type of project created

Setup Remote Runs on Casper from Eclipse

Configuring and Usage of Eclipse IDE

The Green Arrow button can be configured to run on
Casper via a single click. Requires configuration.

1. Click Green arrow dropdown or right click
Project folder and select “Run Configurations”

2. Double click “Parallel Application”
3. In Resources, select “Import PBS Script”

a. Using the “Generic PBS Batch” is not possible
out of box due to unique config of
Cheyenne/Casper PBS

4. Write then browse for desired job submit script
(uses script directory as working directory)

Additional configurations are possible to streamline any
development workflow. Suggest to explore these
options in your own time.

Additional Features of Eclipse PTP

Many more Add-Ons
in “Help > Eclipse
Marketplace”

One favorite is
CodeTogether

Enables remote
paired and group
programming

Configuring and Usage of Eclipse IDE

Additional Features of Eclipse PTP

Another favorite are
Refactoring/Analysis
tools via CDT and
Photran

These enable the IDE
to highlight errors or
issues and perform
automated corrections
to the source code

Configuring and Usage of Eclipse IDE

Summary

• Consult official Eclipse Parallel Development Tool Guide
• Review the IDEAS Productivity presentation by Greg Watson, ORNL

on Scientific Software Development with Eclipse

• Eclipse (and other IDEs) provides variety features for software
development. Eclipse PTP caters to scientific/HPC software

• IDEs give automated and managed control during development
and enables support for increasingly complex workflows
– Does require extra work to configure the IDE for these benefits

Configuring and Usage of Eclipse IDE

https://help.eclipse.org/latest/index.jsp?nav=%2F70
https://ideas-productivity.org/events/hpc-best-practices-webinars/#webinar016

