
Hands-On Session Using
OpenACC in MPAS-A
By: Daniel Howard , Consulting Services Group, CISL & NCAR

Date: April 28th 2022

dhoward@ucar.edu

mailto:dhoward@ucar.edu

In this notebook, we explore the GPU enabled (Model Prediction Across Scales-
Atmosphere) to apply techniques learned from MiniWeather and implementing OpenACC to
develop for GPUs.

Review of exercises from prior OpenACC/MiniWeather sessions Part 1 and Part 2

MPAS-Atmosphere model overview

Managing GPU data in large software projects

Assessing performance of extracted GPU kernels in MPAS-A

MPAS-A

http://mpas-dev.github.io/atmosphere/OpenACC/index.html

Head to the and start a JupyterHub session on Casper login (or
batch nodes using 1 CPU, no GPUs) and open the notebook in
07_HandsOnMPASA/07_HandsOnMPASA.ipynb . Be sure to clone (if needed) and
update/pull the NCAR GPU_workshop directory.

Workshop Etiquette
Please mute yourself and turn off video during the session.

Questions may be submitted in the chat and will be answered when appropriate. You

may also raise your hand, unmute, and ask questions during Q&A at the end of the

presentation.

By participating, you are agreeing to

Recordings & other material will be archived & shared publicly.

Feel free to follow up with the GPU workshop team via Slack or submit support

requests to

Office Hours: Asynchronous support via or schedule a time with an

organizer

NCAR JupyterHub portal

Use the JupyterHub GitHub GUI on the left panel or the below shell commands

git clone git@github.com:NCAR/GPU_workshop.git

git pull

UCAR’s Code of Conduct

support.ucar.edu

Slack

https://jupyterhub.hpc.ucar.edu/stable
https://www.ucar.edu/who-we-are/ethics-integrity/codes-conduct/participants
https://support.ucar.edu/
https://ncargpuusers.slack.com/

Notebook Setup
Set the PROJECT code to a currently active project, ie UCIS0004 for the GPU workshop,
and QUEUE to the appropriate routing queue depending on if during a live workshop session
(gpuworkshop), during weekday 8am to 5:30pm MT (gpudev), or all other times
(casper). Due to limited shared GPU resources, please use GPU_TYPE=gp100 during the
workshop. Otherwise, set GPU_TYPE=v100 (required for gpudev) for independent work.
See for more info.Casper queue documentation

https://arc.ucar.edu/knowledge_base/72581396#StartingCasperjobswithPBS-Concurrentresourcelimits

Notebook Setup
Set the PROJECT code to a currently active project, ie UCIS0004 for the GPU workshop,
and QUEUE to the appropriate routing queue depending on if during a live workshop session
(gpuworkshop), during weekday 8am to 5:30pm MT (gpudev), or all other times
(casper). Due to limited shared GPU resources, please use GPU_TYPE=gp100 during the
workshop. Otherwise, set GPU_TYPE=v100 (required for gpudev) for independent work.
See for more info.Casper queue documentation

In []:
export PROJECT=UCIS0004

export QUEUE=gpudev

export GPU_TYPE=v100

https://arc.ucar.edu/knowledge_base/72581396#StartingCasperjobswithPBS-Concurrentresourcelimits

Review of MiniWeather Performance Optimization
At the end of last session, it was suggested to use async and predominantly collapse
clauses to achieve optimal performance in MiniWeather kernels. Using NX=1024 and
NZ=512 , the most expensive kernel in terms of compute time was at in the
semi_discrete_step subroutine, with NVCOMPILER_ACC_TIME statistics highlighted
below:

The arrangement of gang/worker/vector units is provided by grid: [NUM_GANGS] and
block: [VECTOR_LENGTH x NUM_WORKERS]. The number of workers was 1 in the
previous case so is omitted.

Line 231

/glade/u/home/dhoward/GPU_workshop/05_DirectivesOpenACC/fortran/miniWeather_mpi_exercise2.F90 # Source file
with OpenACC kernel code

semi_discrete_step NVIDIA devicenum=0 # Name of subroutine from which kernel is launched

time(us): 62,147

257: compute region reached 924 times # Specific line number for GPU kernel and number times
reached/launched

257: kernel launched 924 times

grid: [16384] block: [128] # Arrangement of gang/worker/vector in terms of grids
and blocks

device time(us): total=62,147 max=70 min=66 avg=67 # Timing statistics of the GPU kernel

elapsed time(us): total=76,527 max=87 min=80 avg=82 # Timing statistics of the CPU call (less accurate with
asynchronous execution)

257: data region reached 1848 times

file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/miniWeather_mpi_openacc.F90#L231

Running this version with the NVIDIA NSight Systems Profiler (discussed in later session), we
can get a visual representation of the model runtime. You can download and view this profile
using the by downloading (SHIFT + RIGHT-CLICK)

 in this folder.

NVIDIA NSight Systems client

MW_baseline.nsys-rep

https://developer.nvidia.com/nsight-systems
file:///Users/dhoward/Documents/workshop/MW_baseline.nsys-rep

This timeline shows the kernels running on the GPU runtime in the upper blue compute
kernels, pink device to host transfers, and teal host to device transfers segments. The lower
segments show the CPU runtime in blue compute kernel launches, red data
directives/regions, and beige wait/synchronize sections.

The bright blue highlights the most expensive GPU kernel in the semi_discrete_step
subroutine with the associated launch call from the CPU highlighted earlier in the timeline.

Since we used async , the GPU kernels run right after one another without any kernel
launch/exit costs.

If we did not use async , the profile would look like this () and time
would be lost as the CPU waits between every kernel launch/exit.

MW_noasync.qdrep

file:///Users/dhoward/Documents/workshop/MW_noasync.qdrep

MiniWeather - Testing different kernel launch
configurations and clauses
Recall the final exercise of the where we experimented with
various launch configurations in the source file for specific
kernels.

Were you able to achieve any significant speed-up?

The next panels shows statistical results from some launch configuration experiments using
parameters _NX=1024 , _NZ=512 , and _SIM_TIME=10 and different clauses in place of
*** for the semi_discrete_step subroutine kernel. Note that NUM_VARS=4 .

prior MiniWeather session
miniWeather_mpi_exercise2.F90

!$acc parallel loop *** async

 do ll = 1 , NUM_VARS

 !$acc loop ***

 do k = 1 , nz

 !$acc loop ***

 do i = 1 , nx

 state_out(i,k,ll) = state_init(i,k,ll) + dt * tend(i,k,ll)

 enddo

 enddo

 enddo

file:///Users/dhoward/Documents/05_DirectivesOpenACC/05p2_openACC_miniWeather_Tutorial.ipynb
file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/miniWeather_mpi_exercise2.F90

1. Using worker/vector/seq on each loop respectively, the profiler shows

grid: [1] block: [32x4] . Why is this arrangement the least performant?
MiniWeather Kernel L231, semi_discrete_step Total Device Time ()

BaseLine (on V100) - collapse(3) auto vector_length(128) 62,936

clause - gang/worker/vector on each loop resepctively 852,859

clause - worker/vector/seq (Move NUM_VARS innermost, seq) 2,271,059

clause - gang/vector/seq (Move NUM_VARS innermost, seq) 72,584

μs

1. Did you find any better configurations for this or other kernels in MiniWeather?

Explain why it performed better.

2. Do you trust the compiler to make relatively optimal choices with minimal

direction?
MiniWeather Kernel L231, semi_discrete_step Total Device Time ()

BaseLine (on V100) - collapse(3) auto vector_length(128) 62,936

clause - collapse(3) vector_length(32) 100,797

clause - collapse(3) vector_length(64) 63,010

clause - collapse(3) vector_length(256) 62,990

clause - collapse(3) vector_length(512) 63,032

clause - collapse(3) vector_length(1024) 66,458

μs

1. For tile() , why do you think the (32,1,NUM_VARS=4) clause was closest to

the most performant?

2. Can you infer the condition that causes the tile() clause to produce incorrect

results? Hint: What is the max warp size?
MiniWeather Kernel L231, semi_discrete_step Total Device Time ()

BaseLine (on V100) - collapse(3) auto vector_length(128) 62,936

clause - tile(32,32,NUM_VARS) INCORRECT 26,992

clause - tile(32,32,1) 73,476

clause - tile(32,8,NUM_VARS) 77,124

clause - tile(32,1,NUM_VARS) 65,040

clause - tile(1024,1,1) 67,393

clause - tile(128,1,NUM_VARS) 66,421

clause - tile(128,2,NUM_VARS) 74,295

clause - tile(128,4,NUM_VARS) INCORRECT 35,999

clause - tile(*,*,*) -> 32,4,32 150,374

μs

MPAS-Atmosphere Overview

We will now look at a real world production model ,
specifically the GPU version of the atmosphere core MPAS-A and how this model leveraged
OpenACC to refactor towards GPU devices.

So far, only the v6.x Atmosphere core has been ported to GPUs and is freely available to
review via their and the stable or v7.x branches on GitHub.
Some work has also been done on the MPAS-Ocean core given this by PhD
student Ashwath Venkataraman.

If you'd like a more complete overview of MPAS, how to run the model, and research
applications, see the page or the upcoming

.

MPAS (Model Prediction Across Scales)

website v6.x develop-openacc
presentation

2021 MPAS Virtual tutorial 2022 joint WRF/MPAS
workshop

https://mpas-dev.github.io/
https://mpas-dev.github.io/atmosphere/OpenACC/index.html
https://github.com/MPAS-Dev/MPAS-Model/tree/atmosphere/v6.x-openacc
https://github.com/MPAS-Dev/MPAS-Model/tree/atmosphere/develop-openacc
https://www.lanl.gov/org/padwp/adx/computational-physics/parallelcomputing/_assets/docs/2020-student-projects/Ashwath_PCSRI_Final_Presentation.pdf
https://www.mmm.ucar.edu/mpas-tutorial-agenda
https://www.mmm.ucar.edu/events/workshops/2022

Fully compressible non-hydrostatic equations written in flux form

Split-Explicit timestepping via 3rd Order Runge-Kutta, see

The MPAS-A kernels we will focus on computes coefficients for vertically implicit gravity-
wave/acoustic computations needed for each Runge-Kutta timestep. The previosly linked
paper, specifically section 2 and the appendix, covers this in depth with a broader overview
given in the 2021 tutorial presentation.

However, understanding the numerical physics at play is not required to port well
written code to GPUs.

AMS Paper - Klemp,

Skamarock, and Dudhia

Time Integration

https://journals.ametsoc.org/view/journals/mwre/135/8/mwr3440.1.xml
https://www2.mmm.ucar.edu/projects/mpas/tutorial/Virtual2021/MPAS_dynamics_time_integration.pdf

Development Process of MPAS-A

Courtesy of Raghu Raj Kumar, NVIDIA

Identifying an established iterative process for GPU development ahead of work performed
significantly eases development cost and increases success outcomes.

1. Establish a baseline, ensure working and accurate configuration with target hardware

and external software.

2. Port the code, using incremental addition of OpenACC, perhaps using tools for kernel

extraction like (Fortran only) to allow separation of concerns.

See if interested

3. Optimize computationally expensive kernels individually via an analysis and

profiling iterative process.

4. Check portability expectations are met and that code satisfies both CPU and GPU

unit tests.

Look for and eliminate any GPU anti-patterns such as linked lists data

structures or global memory variables which may cause excessive data

movement.

Repeat Steps 2-4 as needed.

5. Integrate changes into benchmarks and verification suite, utilizing version control

and ideally a continuous integration process.

KGen

KGen Guide

https://github.com/NCAR/KGen
https://ncar.github.io/kgendocs/overview.html

MPAS-A Performance Baseline

Getting an accurate baseline helps inform where to dedicate development effort. This can be
measured using internal timing metrics or your preferred CPU profiler (like ,
, gprof, etc), to identifiy hotspots in the code.

From KISTI, Kim, Kang, & Joh

TAU Arm Forge
Map

GPU Acceleration of MPAS Physics
Schemes Using OpenACC

https://www.cs.uoregon.edu/research/tau/home.php
https://developer.arm.com/tools-and-software/server-and-hpc/debug-and-profile/arm-forge/arm-map
https://www2.cisl.ucar.edu/sites/default/files/2021-10/KISTI%20-%20Joh%2C%20Kang%2C%20%26%20Kim.pdf

Specific dynamics/physics schemes were prioritized for GPU while some set for CPU.

A was established in order to utilize idle CPUs. Requires
manual tuning of load balancing between number of CPU and GPU tasks.

GPU

CPU
φR0

φ0 φ0

φR0
φn

φRn
φ2n

Radiation

Idle time

Non-radiation physics

Dynamics

lagged computation of radiation

https://mpas-dev.github.io/atmosphere/OpenACC/lagged_radiation.html

Managing GPU Data in MPAS-A
Recall that using !$acc kernels ... and similar directives will generate lists of variables
needed to manage data movement for each compute region.

These lists can be used and leveraged for your own data directives as GPU development
progresses.

153, Generating implicit copyin(rdzu(:)) [if not already present]

 Generating implicit copyout(cofwr(:,:)) [if not already present]

 Generating implicit copyin(p(:,:)) [if not already present]

 Generating implicit copyout(cofwz(:,:)) [if not already present]

 Generating implicit copyin(fzp(:),t(:,:),zz(:,:),fzm(:),cqw(:,:)) [if not already present]

 Generating implicit copyout(coftz(:,:)) [if not already present]

Given ported kernels, MPAS-A was designed to create CPU and GPU data copies
 via !$acc declare create(...) and copy data at

 via !$acc enter data copyin(...) prior to each kernel call. Then, each
kernel would only require a present(...) clause using the prior variable lists. Reference
counters would mitigate excessive copies.

Any lingering excessive data copies could be identified by profilers and fixed while other
required copies for CPU algorithms & I/O were managed by !$acc update directives.

at
initialization unstructured data
regions

!!! From mpas_atmphys_vars.F module

real(kind=RKIND),dimension(:,:,:),allocatable:: &

!... arrays related to u- and v-velocities interpolated to theta points:

 u_p, &!u-velocity interpolated to theta points [m/s]

 v_p !v-velocity interpolated to theta points [m/s]

!$acc declare create(u_p, v_p)

https://github.com/MPAS-Dev/MPAS-Model/blob/atmosphere/v6.x-openacc/src/core_atmosphere/physics/mpas_atmphys_vars.F
https://github.com/MPAS-Dev/MPAS-Model/blob/atmosphere/v6.x-openacc/src/framework/mpas_pool_routines.F

MPAS-A Kernel Extraction
We will focus on the atm_compute_vert_imp_coefs_work subroutine and kernels as
extracted by , TDD/ASAP in CISL. This is the to the source
subroutine in the full model codebase and in this workshop directory is the the extracted set
of kernels .

Assuming data locality is resolved, this extracted kernel simply utilizes randomized input
data as we will be focusing on optimizing the performance of the subroutine's kernels.
The kernel is run in a repeating loop so we can get a relatively consistent average of
measured performance. A validation tool has not been included at this time but is typically
highly recommended.

For large codebases, building and/or using an automated tool like NCAR's for Fortran
codes or from NL eScience Center for CUDA/OpenCL codes will likely speed up
the development/optimization process.

Supreeth Suresh link, Line 2641

mpas_atm_compute_vert_imp_coefs_work.F90

KGen
Kernel Tuner

https://staff.ucar.edu/users/ssuresh
https://github.com/MPAS-Dev/MPAS-Model/blob/ff0e97f8de30c06adbc751f3808f246b33281dd0/src/core_atmosphere/dynamics/mpas_atm_time_integration.F#L2641
file:///Users/dhoward/Documents/workshop/mpas_atm_compute_vert_imp_coefs_work.F90
https://github.com/NCAR/KGen
https://github.com/benvanwerkhoven/kernel_tuner

EXERCISE: MPAS-A Kernel Optimization
Open the source file and convert the !$acc
kernels loops to optimized !$acc parallel ... compute constructs. Analyze each
set of loops and apply appropriate sets of kernel configuraton clauses to achieve improved
performance. Note: !DIR$ IVDEP tells compiler to ignore loop dependencies for serial
vector SIMD compilations.

You are encouraged to reference the initial attempts at optimization done by the !$acc
kernels directive output during the compilation process. Data management has already
been done for you using -gpu=managed and present(var-list) / create(var-
list) clauses.

Record results of your optimization experiments on a chosen kernel and try to determine
optimal configurations for that kernel. Compare your achieved performance with the

. Work on other kernels as time allows. Note that most kernels may benefit from
similar clause specifications since they operate on similar domain sizes/variables.

mpas_atm_compute_vert_imp_coefs_work.F90

original
at Line 2641

file:///Users/dhoward/Documents/workshop/mpas_atm_compute_vert_imp_coefs_work.F90
https://github.com/MPAS-Dev/MPAS-Model/blob/ff0e97f8de30c06adbc751f3808f246b33281dd0/src/core_atmosphere/dynamics/mpas_atm_time_integration.F#L2641

In []:
module load nvhpc/22.2 &> /dev/null

export _OPENACC=true

make

In []:
module load nvhpc/22.2 &> /dev/null

export _OPENACC=true

make

In []:
qcmd -A $PROJECT -q $QUEUE -l select=1:ncpus=1:ngpus=1 -l gpu_type=$GPU_TYPE -l walltime=20 -v NVCOMPILER_ACC_TIME=1 -- \

`pwd`/vert_implicit_coefs.exe

In []:
module load nvhpc/22.2 &> /dev/null

export _OPENACC=true

make

In []:
qcmd -A $PROJECT -q $QUEUE -l select=1:ncpus=1:ngpus=1 -l gpu_type=$GPU_TYPE -l walltime=20 -v NVCOMPILER_ACC_TIME=1 -- \

`pwd`/vert_implicit_coefs.exe

MPAS-A Kernels L### Device Time ()

BaseLine (on V100) - !$acc kernels XX

clause - gang/vector XX

clause - tile(##,##) XX

clause - tile(*,*) XX

clause - vector_length(XX) XX

clause - num_workers(XX) XX

... XX

μs

Final Points
1. Plan for and commit to a defined iterative GPU development process to remove

pain points and manage long term goals of your code project

Smaller, validated incremental changes are easier to debug

2. Start with descriptive !$acc kernels then add prescriptive !$acc

parallel ... kernels as needed for expensive kernels

!$acc kernels can still achieve meaningful performance alone

3. Understand that the GPU development process takes time and effort but specific

tools/techniques can drastically speed up development time.

Suggested Resources

Computers & Geosciences,

 by J. Kim, J. Kang, and M. Joh

(KISTI)

OpenACC.org and NVIDIA managed GitHub, presentations, and learning materials

Lab sequence on

Lab sequence on

Lab sequence on

Lab sequence on

Lab sequences on

After this session, we will have three weeks until the next workshop. Order of upcoming
sessions will also be adjusted to accomodate availability of a NVIDIA engineer to present on
Multi-GPU programming. Look out for upcoming announcements.

2021 MPAS Virtual tutorial

GPU acceleration of MPAS microphysics WSM6 using

OpenACC directives: Performance and verification

GPU Bootcamps

OpenACC

Profiling Tools with MiniWeather

Various GPU Programming Paradigms (CUDA, OpenACC,

stdPar, OpenMP)

Multi-GPU Programming

GPU AI with CFD, PINNs, and Climate models

https://www.mmm.ucar.edu/mpas-tutorial-agenda
https://www.sciencedirect.com/science/article/pii/S0098300420306051
https://github.com/gpuhackathons-org/gpubootcamp/tree/master/hpc
https://github.com/gpuhackathons-org/gpubootcamp/tree/master/hpc/openacc
https://github.com/gpuhackathons-org/gpubootcamp/tree/master/hpc/miniprofiler
https://github.com/gpuhackathons-org/gpubootcamp/tree/master/hpc/nways
https://github.com/gpuhackathons-org/gpubootcamp/tree/master/hpc/multi_gpu_nways
https://github.com/gpuhackathons-org/gpubootcamp/tree/master/hpc_ai

