
Directive Based
Programming with
OpenACC
By: Daniel Howard, Consulting Services Group, CISL & NCAR, March 31st 2022



In this notebook we present techniques and code examples for using OpenACC to develop
for GPUs. We will cover:

1. Comparison of descriptive & perscriptive programming and their portability

OpenACC

OpenMP

ISO Standard Language Parallelism

2. Fork-Join Execution Model for Attached GPU Accelerators

3. OpenACC API Directives with Unified Memory

Compute construct directives

!$acc kernels ...

!$acc parallel ...

!$acc serial ...

!$acc loop  and other specification clauses



Workshop Etiquette
Please mute yourself and turn off video during the session.

Questions may be submitted in the chat and will be answered when appropriate. You

may also raise your hand, unmute, and ask questions during Q&A at the end of the

presentation.

By participating, you are agreeing to 

Recordings & other material will be archived & shared publicly.

Feel free to follow up with the GPU workshop team via Slack or submit support

requests to 

Office Hours: Asynchronous support via  or schedule a time with an

organizer

UCAR’s Code of Conduct

support.ucar.edu

Slack

https://www.ucar.edu/who-we-are/ethics-integrity/codes-conduct/participants
file:///Users/dhoward/Documents/05_DirectivesOpenACC/support.ucar.edu
file:///Users/dhoward/Documents/05_DirectivesOpenACC/ncargpuusers.slack.com


Notebook Setup
Set the PROJECT  code to a currently active project, ie UCIS0004  for the GPU workshop,
and QUEUE  to the appropriate routing queue depending on if during a live workshop
session ( gpuworkshop ), during weekday 8am to 5:30pm MT ( gpudev ), or all other
times ( casper ). Due to limited shared GPU resources, please use GPU_TYPE=gp100
during the workshop. Otherwise, set GPU_TYPE=v100  (required for gpudev ) for
independent work. See  for more info.Casper queue documentation

https://arc.ucar.edu/knowledge_base/72581396#StartingCasperjobswithPBS-Concurrentresourcelimits


Notebook Setup
Set the PROJECT  code to a currently active project, ie UCIS0004  for the GPU workshop,
and QUEUE  to the appropriate routing queue depending on if during a live workshop
session ( gpuworkshop ), during weekday 8am to 5:30pm MT ( gpudev ), or all other
times ( casper ). Due to limited shared GPU resources, please use GPU_TYPE=gp100
during the workshop. Otherwise, set GPU_TYPE=v100  (required for gpudev ) for
independent work. See  for more info.Casper queue documentation

In [ ]:
export PROJECT=UCIS0004

export QUEUE=gpudev

export GPU_TYPE=v100


https://arc.ucar.edu/knowledge_base/72581396#StartingCasperjobswithPBS-Concurrentresourcelimits


Useful Definitions
Device: Accelerator on which execution can be offloaded (ex : GPU).

Host: Machine (ie CPU) hosting 1 or more accelerators and in charge of execution

control.

Kernel: Computational runtime derived from a section of parallelized code that is

scheduled to run on an accelerator.

Execution thread: Sequence of kernels to be executed on an accelerator.

Thread: A single Processing Element (PE) or execution unit. On a NVIDIA GPU, run

on a single CUDA core.



Streaming Multiprocessor (SM): Highest level processing unit in NVIDIA GPU that

processes blocks/gangs of threads. Each SM provides a shared memory cache,

similar to L1, accessible by the block/gang of threads running on that SM (V100 -

96kB, A100 - 160kB).

Grid: Collection of blocks/gangs of threads that are distributed for execution across

SMs. Can be organized in Euclidean dimensions.

Gang (OpenACC) / Teams (OpenMP): Coarse-grain parallelism structure,

assigned to a SM. Contains a block of threads at size num_workers times

vector_length and has a shared memory/L1 cache.

Worker (OpenACC): Fine-grain parallelism that executes vectors of threads.

Equivalent to a warp.

Vector: Group of threads executing the same SIMT instruction and executed by a

worker.
Note: Different vendors (ie NVIDIA vs AMD) use different terms that mean

equivalent concepts



Portability and Comparing OpenACC, OpenMP,
and ISO Standard Language Parallelism
Recall from earlier sessions the difference between prescriptive and descriptive
programming. In general, descriptive paradigms, given the flexibility afforded to compilers,
are able to achieve greater portability across different hardware types.

OpenMP has longer history from 1997 and predominantly is prescriptive while

OpenACC is more descriptive, beginning in 2011

ISO Standard Language Parallelism (stdPar) tends descriptive, but still early stage

implementation across compilers

More compilers support  but fewer support  (links list current

compiler support)

OpenACC is more mature for GPUs (esp. NVIDIA) while OpenMP only recently has

been expanding GPU offload support

See Oak Ridge National Lab's " " from

Dec 2021 if interested.

Note: Legacy OpenMP will NOT run well off the shelf on GPUs

stdPar is in language standard and aims to replace need for directives, see 

 by Michael Wolfe

OpenMP OpenACC

Introduction to OpenMP GPU Offload

Burying

the OpenACC vs OpenMP Hatchet

https://www.openmp.org/resources/openmp-compilers-tools/#compilers
https://www.openacc.org/tools
https://www.olcf.ornl.gov/calendar/introduction-to-openmp-gpu-offloading/
https://www.nextplatform.com/2019/01/16/burying-the-openmp-versus-openacc-hatchet/


Nonetheless, directive based & stdPar landscape constantly changes and different
developers have their own opinion which is best. When deciding yourself, most important
is to consider any long term portability needs of your code.

Each cycle, a HPC system's hardware typically is set on order 3-5 years while a software
project can more easily extend to 10+ years if designed with longevity in mind. See 

 supported by the Department of Energy and National Labs alongside
the .

Better
Scientific Software

Exascale Computing Project

https://bssw.io/
https://www.exascaleproject.org/


Philosophical Differences between OpenACC and
OpenMP Programming Models

OpenACC

Compilers are allowed flexibility in how to parallelize

Programmer augments information available to compiler and can

optionally provide suggestions on how to map threads on accelerator

More portable across target devices since compiler expects freedom in

how to parallelize for each target type

Non-parallel code must be made parallel. Programmer can safely

suggest parallel regions since compiler checks if loops are actually

parallel (unless independent  clause is used)



OpenMP

Compilers must follow user-directed parallelization and the

programmer must explicitly specify how the parallelism is achieved

Only recently allowed for compiler-generated automatic

parallelization using loop  clause

Less portable, different target devices (ie GPUs vs CPUs) require different

directives

Non-parallel code can be optionally restructured. Responsibility of

programmer to ensure correct implementation of parallel regions



ISO Standard Language Parallelism

Still allows flexibility to the compiler depending on available target

device

Removes the need for directives or other extra instructions to compilers

Standard within language and not in a separate organization

Not yet as robust as OpenACC/OpenMP, ie missing support for reductions.

Over time, should gain breadth of scope of directives like

OpenACC/OpenMP



OpenACC and OpenMP Are Relatives

From " " Urbanic, 2021OpenMP and GPUs

https://www.psc.edu/wp-content/uploads/2021/06/OpenMP-and-GPUs.pdfhttps://www.psc.edu/wp-content/uploads/2021/06/OpenMP-and-GPUs.pdf


OpenMP - Began in 1997 (GPU offload in aproximately 2013-2015)

Latest 5.2 standard Nov 2021, broad community adoption, Intel strongly

influences development

OpenACC - Began 2010

Latest 3.1 standard Nov 2020, GPU-only community adoption, NVIDIA

strongly influences development

Compiler support for GPU target variable across vendors

Uncertain if standards will merge and/or be replaced by ISO Language Standards

However, source translation between all these approaches is relatively

straightforward



Translating between OpenACC and OpenMP
OpenACC OpenMP Description

Regional Directives Initializes parallel runtime regions

!$acc parallel 
...

!$omp target teams ... Establishes a parallel runtime region/compute kernel

!$acc kernels 
...

!$omp target teams loop Similar but gives optimization flexibility to compiler

!$acc loop ... !omp ... Defines a parallel loop within a compute kernel

Parallelization
Clauses

Specifies types of parallelization in a region

gang
distribute  or distribute parallel 
for

Specifies a gang work unit

worker parallel for Specifies a worker work unit within a gang

vector
simd  or parallel for num_threads(1) 
simd

Specifies a SIMD work unit, best with coalesced memory

num_gangs() num_teams() Specifies number of gangs/teams

num_workers() num_threads() Specifies number of workers (threads in CPU context)

vector_length() simdlen() Specifies size of SIMD type operation

Data Clauses Specifies data movement between CPU & GPU in parallel/data
regions

create() alloc() Allocates memory on target device for data object

copy() map(tofrom:) Allocates memory if needed, copies data at region entry/exit

copyin() map(to:) Allocates memory if needed, copies data at region entry

copyout() map(from:) Allocates memory if needed and copies data object at region
exit

present() assert(omp_target_is_present()) Asserts that a data object is already present on GPU



Details for all of these directives and control statements for directive based computing will
be covered later. Point is that most statements have clear translations and it wouldn't be
a significant loss of effort to choose one programming paradigm but then later refactor to
another. See  (Lambert, et al) for language translation details.CCAMP paper

https://www.osti.gov/servlets/purl/1666015


Fork-Join Execution Model

Rita, et al, 2018

https://www.mdpi.com/2076-3417/8/3/399


Both OpenMP and OpenACC employ similar execution models

1. First, the host CPU runs serial code until it encounters a parallel region

2. The host process then forks off many threads to process the parallel code

OpenMP allows some degree of thread divergence and nested parallelism

while OpenACC (and GPU programming) is less flexible and expects all

threads to perform the same tasks in a kernel

3. Once all threads complete their work, the threads join back together and continue

The difference for GPU offload is there can be additional steps at both the fork and join to
transfer data from the host to the device or vice versa. OpenMP often refers to a "master"
thread that leads execution on a host device but the concept of a "master" GPU thread is
not practical.



Directive Based Programming Example



Essentially, both OpenACC and OpenMP take existing codes and decorate them with
directives that define parallel regions alongside other details given by the programmer in
associated clauses. Compilers can then choose to honor these directives and build an
executable that forks and joins parallel threads across the program's execution.

In this session, we will focus on OpenACC given it's maturity and limited time to only focus
on one programming model in a single session.



MiniWeather for Simulating Weather-like Flows
For this session, we will use the  mini-app to explore how you can implement
OpenACC. This mini-app simulates weather-like flows, specifically to fascilitate training in
parallelizing accelerated HPC architectures and has been developed by Matt Norman
(ORNL), Jeff Larkin (Nvidia), and Isaac Lyngaas (ORNL). For example, MiniWeather can
model injection jet streams into a stable atmosphere, like below.

MiniWeather

https://github.com/mrnorman/miniWeather


Test that MiniWeather Builds Correctly
First, let's build MiniWeather using  and run some tests to make
sure the model builds correctly. To note, we will focus on the FORTRAN  and OpenACC
versions of the model but MiniWeather is also a great tool for exploring other programming
models like C  and C++ , each utilizing MPI , OpenMP , or do 
concurrent / std::par . See other language folders and associated programming
paradigm source files for examples. A script file for Casper has been adapted for the other
build folders to fascilitate this exploration if you would like to do this on your own time. See
MiniWeather's README " " section for more info about
this.

cmake_casper_nvhpc.sh

Compiling and Running the Code

file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/build/cmake_casper_nvhpc.sh
https://github.com/mrnorman/miniWeather#compiling-and-running-the-code


Test that MiniWeather Builds Correctly
First, let's build MiniWeather using  and run some tests to make
sure the model builds correctly. To note, we will focus on the FORTRAN  and OpenACC
versions of the model but MiniWeather is also a great tool for exploring other programming
models like C  and C++ , each utilizing MPI , OpenMP , or do 
concurrent / std::par . See other language folders and associated programming
paradigm source files for examples. A script file for Casper has been adapted for the other
build folders to fascilitate this exploration if you would like to do this on your own time. See
MiniWeather's README " " section for more info about
this.

cmake_casper_nvhpc.sh

Compiling and Running the Code

Initially, we will run this test with the base mpi  model using  and the
already implemented openacc  model using . The file in

 has its final make line modified to only build these
two implementations but you can simply change the final line back to the singular make
command without targets to build all of miniWeather's executables or specify different
targets as desired.

miniWeather_mpi.F90
miniWeather_mpi_openacc.F90

fortran/build/cmake_casper_nvhpc.sh

file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/build/cmake_casper_nvhpc.sh
https://github.com/mrnorman/miniWeather#compiling-and-running-the-code
file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/miniWeather_mpi.F90
file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/miniWeather_mpi_openacc.F90
file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/build/cmake_casper_nvhpc.sh


Test that MiniWeather Builds Correctly
First, let's build MiniWeather using  and run some tests to make
sure the model builds correctly. To note, we will focus on the FORTRAN  and OpenACC
versions of the model but MiniWeather is also a great tool for exploring other programming
models like C  and C++ , each utilizing MPI , OpenMP , or do 
concurrent / std::par . See other language folders and associated programming
paradigm source files for examples. A script file for Casper has been adapted for the other
build folders to fascilitate this exploration if you would like to do this on your own time. See
MiniWeather's README " " section for more info about
this.

cmake_casper_nvhpc.sh

Compiling and Running the Code

Initially, we will run this test with the base mpi  model using  and the
already implemented openacc  model using . The file in

 has its final make line modified to only build these
two implementations but you can simply change the final line back to the singular make
command without targets to build all of miniWeather's executables or specify different
targets as desired.

miniWeather_mpi.F90
miniWeather_mpi_openacc.F90

fortran/build/cmake_casper_nvhpc.sh

In [ ]:
cd fortran/build

source cmake_casper_nvhpc.sh

cd ../..

# After running this, there will be the executables `mpi` and `openacc` in "fortran/build"


file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/build/cmake_casper_nvhpc.sh
https://github.com/mrnorman/miniWeather#compiling-and-running-the-code
file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/miniWeather_mpi.F90
file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/miniWeather_mpi_openacc.F90
file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/build/cmake_casper_nvhpc.sh


Validate the Executable
Now we can run validation tests on the compiled programs. Below, we use the

 script to do this. For miniWeather, you could also run make  then make 
test  to validate all the different executable types for the model. To note, we can set the
environment variable NVCOMPILER_ACC_TIME=1  in order to provide some contextual
performance runtime information for comparison later.

check_output.sh

file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/build/check_output.sh


First, run the serial mpi_test .



First, run the serial mpi_test .

In [ ]:
cd fortran/build

qcmd -A $PROJECT -q $QUEUE -l select=1:ncpus=1:ngpus=1 -l gpu_type=$GPU_TYPE -l walltime=60 -v NVCOMPILER_ACC_TIME=0 -- \

$PWD/check_output.sh $PWD/mpi_test 1e-13 4.5e-5

cd ../..




Now run the parallel openacc_test  offloaded on a GPU. Pay attention to how much
faster this one runs. Feel free to set NVCOMPILER_ACC_TIME=1  to see more info about
GPU compute kernel performance.



Now run the parallel openacc_test  offloaded on a GPU. Pay attention to how much
faster this one runs. Feel free to set NVCOMPILER_ACC_TIME=1  to see more info about
GPU compute kernel performance.

In [ ]:
cd fortran/build

qcmd -A $PROJECT -q $QUEUE -l select=1:ncpus=1:ngpus=1 -l gpu_type=$GPU_TYPE -l walltime=60 -v NVCOMPILER_ACC_TIME=0 -- \

$PWD/check_output.sh $PWD/openacc_test 1e-13 4.5e-5

cd ../..




OpenACC Directives - kernels  and 
parallel  with Unified Managed Memory
For reference, here is the . You can also read through
the official  or 

 when your time allows.

We first introduce the kernels  and parallel  directives in OpenACC. For an in depth
comparison, read the blog post  by Michael
Wolfe. In order to simplify initial work, we will use managed memory.


OpenACC 2.7 Quick Reference Guide
OpenACC 3.1 Full Standard Specification OpenACC Programming and Best

Practices Guide

OpenACC Kernels and Parallel Constructs

https://www.openacc.org/sites/default/files/inline-files/API%20Guide%202.7.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.1-final.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0_0.pdf
https://www.pgroup.com/blogs/posts/kernels-vs-parallel.htm


With managed memory, the address space between the CPU and the GPU is abstracted to
one unified construct. This approach is optional for OpenACC  & OpenMP  using the flag -
gpu=managed  but is enabled by default for stdPar . To note, you may use data
directives from OpenACC / OpenMP  alongside stdPar  with some compilers. With unified
memory, the programmer does not need to worry about data movement explicitly. Instead,
the runtime will automatically move data as needed between the CPU and GPU whenever a
page fault occurs, ie GPU tries to access memory that is not available/updated in its
physical high bandwidth memory space.

In later sessions, we will spend some time with !$acc data  regions since using
managed memory can lead to sub-optimal performance. To note, due to non-optimized
data movement patterns, some kernels have already been specified with OpenACC
directives in the MPI section of subroutine set_halo_values_x(state) .



Using the Descriptive !$acc kernels
Compute Construct Directive
When you have a parallelizable loop or tightly nested loops, you can very easily suggest to
the compiler to run it on the GPU using the descriptive !$acc kernels  directive.
When targetting NVIDIA GPUs, the compiler then essentially builds a CUDA kernel for you
and assigns parallel execution in a close to optimal arrangement across gangs, workers,
and vectors. This is a descriptive approach and the easiest way to port an application to a
GPU using OpenACC.

With descriptive programming, the compiler does all the heavy lifting but regardless,
only takes the directives as advice. If the compiler determines it can't parallelize your code,
ie sees a potential data race, serial GPU code will be compiled instead. Thus, optimal
performance is often difficult to achieve with the !$acc kernels  directive alone as the
compiler often won't parallelize code and instead would benefit from additional information
provided about each compute region. Here are some important points:



Use !$acc kernels  and !$acc end kernels  to encapsulate loop(s) or

multiple sets of loop(s) that run in sequence

Each loop or nested loop set must not have any data dependencies

between loop iterations that, for example, would cause a data race

condition.

By default, there is an implicit barrier at the end of a parallel execution region. Host

thread execution will pause until the kernel completes

Use the async()  and wait()  clauses to permit asynchronous

execution, discussed at future session

You may specify num_gangs() , num_workers() , and vector_length()

but only the compiler gets to decide which execution type is appied to each loop

level(s) within an !$acc kernels  region.

You may not nest compute construct regions. Only one kernels , parallel , or 

serial  context may be in scope at a time

An example of using the !$acc kernels  in FORTRAN is below:

!$acc kernels [optional clauses]

    do i = 1, n

        do j = 1, m

            ...

        enddo

    enddo

!$acc end kernels




EXERCISE: Autoparallelization Using !$acc 
kernels  Descriptive Directive
Add !$acc kernels  regions the TODO sections of  (use
CTRL+F  or CMD+F  TODO). You may enter a [x]  in the raw text of this cell to track when
you're finished with each section. Some have already been completed for you.

[ ] Line 225

[ ] Line 274

[ ] Line 306

[ ] Line 334

[x] Line 371

[x] Line 454

[x] Line 871

miniWeather_mpi_exercise.F90

file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/miniWeather_mpi_exercise.F90#L225


Once this is done, run the below commands to make a new executable from the exercise
source file. To note, within the  at Line 147 we added:

The -gpu=managed  flag so that you do not have to worry about data movement

yet during this exercise

The -Minfo=accel  flag so information about how the compiler is targetting the

GPU is also printed during the make/compilation process.

Investigate the output from the -Minfo=accel  compiler flag. What types of
parallelizations did the compiler find and perform? Which loops were not able to be
parallelized by the compiler?

fortran/CMakeLists.txt

file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/CMakeLists.txt#L147


Once this is done, run the below commands to make a new executable from the exercise
source file. To note, within the  at Line 147 we added:

The -gpu=managed  flag so that you do not have to worry about data movement

yet during this exercise

The -Minfo=accel  flag so information about how the compiler is targetting the

GPU is also printed during the make/compilation process.

Investigate the output from the -Minfo=accel  compiler flag. What types of
parallelizations did the compiler find and perform? Which loops were not able to be
parallelized by the compiler?

fortran/CMakeLists.txt

In [ ]:
make -C fortran/build openacc_ex openacc_test_ex


file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/CMakeLists.txt#L147


EXERCISE: Run the Autoparalellized OpenACC
MiniWeather Program
Once you are satisfied with your changes and compiled the new executable from previous
exercise, run the below cell to test to make sure you have not introduced any bugs. If you
get stuck, check .

To note, we add here the environment variable NVCOMPILER_ACC_TIME=1 . Use this to
compare to previous timing results of the already implemented openacc program for each
kernel. Do you notice any timing differences?

miniWeather_mpi_openacc.F90

file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/miniWeather_mpi_openacc.F90


EXERCISE: Run the Autoparalellized OpenACC
MiniWeather Program
Once you are satisfied with your changes and compiled the new executable from previous
exercise, run the below cell to test to make sure you have not introduced any bugs. If you
get stuck, check .

To note, we add here the environment variable NVCOMPILER_ACC_TIME=1 . Use this to
compare to previous timing results of the already implemented openacc program for each
kernel. Do you notice any timing differences?

miniWeather_mpi_openacc.F90

In [ ]:
cd fortran/build

qcmd -A $PROJECT -q $QUEUE -l select=1:ncpus=1:ngpus=1 -l gpu_type=$GPU_TYPE -l walltime=60 -v NVCOMPILER_ACC_TIME=1 -- \

$PWD/check_output.sh $PWD/openacc_test_ex 1e-13 4.5e-5

cd ../..


file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/miniWeather_mpi_openacc.F90


Once you are confident there are no bugs, you can run the next qcmd  cell to check
performance of the non-test program, openacc_ex . If you want to modify the resolution,
simulation time, or problem type (see MiniWeather's ),
you may edit the parameters at line 53 of . You will
have to rebuild the executable using the below make  command.

Altering the Code's Configuration
fortran/miniWeather_mpi_exercise.F90

https://github.com/mrnorman/miniWeather#altering-the-codes-configurations
file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/miniWeather_mpi_exercise.F90#L53


Once you are confident there are no bugs, you can run the next qcmd  cell to check
performance of the non-test program, openacc_ex . If you want to modify the resolution,
simulation time, or problem type (see MiniWeather's ),
you may edit the parameters at line 53 of . You will
have to rebuild the executable using the below make  command.

Altering the Code's Configuration
fortran/miniWeather_mpi_exercise.F90

In [ ]:
make -C fortran/build openacc_ex


https://github.com/mrnorman/miniWeather#altering-the-codes-configurations
file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/miniWeather_mpi_exercise.F90#L53


Once you are confident there are no bugs, you can run the next qcmd  cell to check
performance of the non-test program, openacc_ex . If you want to modify the resolution,
simulation time, or problem type (see MiniWeather's ),
you may edit the parameters at line 53 of . You will
have to rebuild the executable using the below make  command.

Altering the Code's Configuration
fortran/miniWeather_mpi_exercise.F90

In [ ]:
make -C fortran/build openacc_ex


In [ ]:
cd fortran/build

qcmd -A $PROJECT -q $QUEUE -l select=1:ncpus=1:ngpus=1 -l gpu_type=$GPU_TYPE -l walltime=60 -- \

mpiexec -n 1 $PWD/openacc_ex

cd ../..


https://github.com/mrnorman/miniWeather#altering-the-codes-configurations
file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/miniWeather_mpi_exercise.F90#L53


GPU Execution Task Granularity

From  Jiang, et
al 2019

"Porting LASG/ IAP Climate System Ocean Model to GPUs Using OpenACC"

http://dx.doi.org/10.1109/ACCESS.2019.2932443


OpenACC, regardless if you specify it manually or not, schedules execution threads
organized in gangs, workers, and vectors structures. Each generation of hardware has
different hardware configurations that alter the limitations, arrangement, and number
allowed of each of these execution structures.

One important detail to remember, especially if you're interested in optimization
techniques, is that each gang is assigned it's own shared memory/L1 cache in the SM.
Each gang, or thread block in CUDA terms, does not migrate between SMs. An architecture
diagram for an NVIDIA V100 SM follows:





Using the !$acc parallel  and !$acc 
loop  Compute Construct Directives
You can do a little extra work and instead use the more prescriptive !$acc parallel
directive and clasues like loop . This directive expects more direction from the
programmer to specify how the parallel work takes place and tends to perform better than 
!$acc kernels , however automatic parallelization analysis from the compiler still takes
place for each. One key difference however is that a !$acc kernels  construct can
encapsulate multiple distinct parallel regions, ie compute kernels, and then create either a
fused single kernel or multiple kernels depending on compiler analysis while a !$acc 
parallel  region can only specify one singular CUDA kernel compute region at a time,
typically at the default gang  level without any additional clauses.

An example of using the !$acc parallel  in FORTRAN is below:

!$acc parallel loop collapse(2) reduction(+:sum)

    do i = 1, n

        do j = 1, m

            ...

            sum = sum + tke

        enddo

    enddo

!$acc end parallel




More important however are these added clauses you should specify alongside the
compute regions. Here are some clause examples to consider:

You may use !$acc loop ...  within a !$acc kernels/parallel ...

region on specific loop(s) or alongside a compute construct directive such as 

!$acc parallel loop ... .

Use !$acc parallel loop [gang/worker/vector]  to distribute work in...

Gangs: across GPU's SMs. Each gang has a shared memory cache. When

not collapsing loops, is usualy recommended for the outermost loop

Workers: within GPU's SMs. Each worker executes a vector and is one or

multiple warps. This clause is often not used with only two levels of

parallelism/for loops

Vectors: within GPU's SMs. Should be of the order of SIMT or CPU like

SIMD operations, ie length 128 or in multiples of warp size 32



Use !$acc parallel loop collapse(N)  to unroll tightly N nested loops into

one large loop to equally distribute work across GPU

Best utilized when your innermost loop is not of optimal size for vector

work

Often useful when there are more than three levels of parallelism that are

beyond a GPU's typical three levels of parallelism

Provides more flexibility towards dynamic loop dimension sizes



Use !$acc parallel loop reduction(op:var)  to indicate that a reduction

should be performed on a variable to avoid a race condition

op -> + * max min iand ior ieor .and. .or. .eqv.

.neqv.

var -> A scalar varaiable

May also use !$acc atomic update  construct, paricular to wrap

around an array type object that must avoid updating the same memory

locations.



Use !$acc parallel private(var1,var2,...)  to specify that each

variable listed should be private to whichever execution level scheduled.

If you use !$acc parallel loop gang 

private(var1,var2,...) , each variable will be private to each gang.

If you use !$acc parallel loop vector 

private(var1,var2,...) , each variable will be private to each thread

associated with each vector lane.



Using the !$acc serial  Compute
Construct Directive
Sometimes its useful to specify a serial compute region that will run on the GPU. This is
most useful in cases where

The size of the loops is not ideal for the high level of parallelism achieveable by a

GPU, ie O(10-100) loop size, but the cost to move data between GPU and host

outweighs the performance gain to let the serial code optimized CPU host do the

work.

There is non-loop serial code that, though would run redundantly on GPU, would be

better kept on GPU to avoid data transfers.

Essentially, !$acc serial  always executes with a single gang of a single worker with a
vector length of one. MiniWeather does not have any good examples of this use case, but
you may try to play around with this concept, particularly on the serial code sections
between for loops, to investigate how it changes performance.



EXERCISE: Parallelization Using the !$acc 
parallel  Prescriptive Directive
Modify the previously added !$acc kernels  regions to provide more information to the
compiler using the !$acc parallel  directive. Again, look for the TODO sections of

 (use CTRL+F  or CMD+F  TODO). You may enter a 
[x]  in the raw text of this cell to track when you're finished with each section.

[ ] Line 225

[ ] Line 274

[ ] Line 306

[ ] Line 334

[ ] Line 371

[ ] Line 454

[ ] Line 871

fortran/miniWeather_mpi_exercise.F90

file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/miniWeather_mpi_exercise.F90#L225


Investigate the output from the -Minfo=accel  compiler flag. What types of
parallelizations did the compiler find and perform? Any improvements from last
time?



Investigate the output from the -Minfo=accel  compiler flag. What types of
parallelizations did the compiler find and perform? Any improvements from last
time?

In [ ]:
make -C fortran/build openacc_ex openacc_test_ex




EXERCISE: Run Your Improved OpenACC
Program
Once you are satisfied with your changes and compiled the new executable from previous
exercise, run the below cell to test to make sure you have not introduced any bugs.

To note, we enable here the environment variable NVCOMPILER_ACC_TIME=1 . Use this
to compare to previous timing results of each kernel. Do you notice any timing
differences?



EXERCISE: Run Your Improved OpenACC
Program
Once you are satisfied with your changes and compiled the new executable from previous
exercise, run the below cell to test to make sure you have not introduced any bugs.

To note, we enable here the environment variable NVCOMPILER_ACC_TIME=1 . Use this
to compare to previous timing results of each kernel. Do you notice any timing
differences?

In [ ]:
cd fortran/build

qcmd -A $PROJECT -q $QUEUE -l select=1:ncpus=1:ngpus=1 -l gpu_type=$GPU_TYPE -l walltime=60 -v NVCOMPILER_ACC_TIME=1 -- \

$PWD/check_output.sh $PWD/openacc_test_ex 1e-13 4.5e-5

cd ../..




Once you are confident there are no bugs, you can run the next qcmd  cell to check
performance of the non-test program, openacc_ex  (or simply use the openacc
program for an already fully optimized version). If you want to modify the resolution,
simulation time, or problem type (see ), you may edit the
parameters at line 53 of . You will have to rebuild the
executable using the below make  command.

Results of the program may be viewed by initiating a ssh X session with Casper on a
terminal ssh -Y [username]@casper.ucar.edu  then running module load 
ncview  and ncview output.nc  on the output file that should now be in your $HOME
directory or the folder where you ran the MiniWeather executable from.

Altering the Code's Configuration
fortran/miniWeather_mpi_exercise.F90

https://github.com/mrnorman/miniWeather#altering-the-codes-configurations
file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/miniWeather_mpi_exercise.F90#L53


Once you are confident there are no bugs, you can run the next qcmd  cell to check
performance of the non-test program, openacc_ex  (or simply use the openacc
program for an already fully optimized version). If you want to modify the resolution,
simulation time, or problem type (see ), you may edit the
parameters at line 53 of . You will have to rebuild the
executable using the below make  command.

Results of the program may be viewed by initiating a ssh X session with Casper on a
terminal ssh -Y [username]@casper.ucar.edu  then running module load 
ncview  and ncview output.nc  on the output file that should now be in your $HOME
directory or the folder where you ran the MiniWeather executable from.

Altering the Code's Configuration
fortran/miniWeather_mpi_exercise.F90

In [ ]:
make -C fortran/build openacc_ex


https://github.com/mrnorman/miniWeather#altering-the-codes-configurations
file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/miniWeather_mpi_exercise.F90#L53


Once you are confident there are no bugs, you can run the next qcmd  cell to check
performance of the non-test program, openacc_ex  (or simply use the openacc
program for an already fully optimized version). If you want to modify the resolution,
simulation time, or problem type (see ), you may edit the
parameters at line 53 of . You will have to rebuild the
executable using the below make  command.

Results of the program may be viewed by initiating a ssh X session with Casper on a
terminal ssh -Y [username]@casper.ucar.edu  then running module load 
ncview  and ncview output.nc  on the output file that should now be in your $HOME
directory or the folder where you ran the MiniWeather executable from.

Altering the Code's Configuration
fortran/miniWeather_mpi_exercise.F90

In [ ]:
make -C fortran/build openacc_ex


In [ ]:
cd fortran/build

qcmd -A $PROJECT -q $QUEUE -l select=1:ncpus=1:ngpus=1 -l gpu_type=$GPU_TYPE -l walltime=60 -- \

mpiexec -n 1 $PWD/openacc_ex

cd ../..


https://github.com/mrnorman/miniWeather#altering-the-codes-configurations
file:///Users/dhoward/Documents/05_DirectivesOpenACC/fortran/miniWeather_mpi_exercise.F90#L53


Suggested Resources
Matt Norman's 

May 2021,  and 

Official  - Not all updated features are

implemented yet by compatible compilers

If you want to dive deep into lower level control and optimization of GPU

performance, check out Oak Ridge National Lab's .

A Practical Introduction to GPU Refactoring in FORTRAN with

Directives for Climate

OpenACC Programming and Best Practices Guide Github

OpenACC 2.7 Quick Reference Guide

OpenACC 3.1 Full Standard Specification

CUDA Training Series

https://github.com/mrnorman/miniWeather/wiki/A-Practical-Introduction-to-GPU-Refactoring-in-Fortran-with-Directives-for-Climate
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0_0.pdf
https://github.com/OpenACC/openacc-best-practices-guide
https://www.openacc.org/sites/default/files/inline-files/API%20Guide%202.7.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.1-final.pdf
https://olcf.ornl.gov/cuda-training-series/https://olcf.ornl.gov/cuda-training-series/

