
Introduction to Parallel
Programming

2022 GPU Computing Workshop Series

Shiquan Su
CISL HPCD Consulting Services Group

FEBRUARY 3rd, 2022

Workshop Etiquette

• Please mute yourself and turn off video during the session.

• Questions may be submitted in the chat and will be answered
when appropriate. You may also raise your hand, unmute, and
ask questions during Q&A at the end of the presentation.

• By joining today, you are agreeing to UCAR’s Code of Conduct

• Recordings & other material will be archived & shared publicly.

• Feel free to follow up with the GPU workshop team at our office
hours, our Slack, or submit support requests to support.ucar.edu
– Office Hours: Tuesdays, times and connection details TBD

https://www.ucar.edu/who-we-are/ethics-integrity/codes-conduct/participants
http://support.ucar.edu/

Workshop Series and Logistics

• Scheduled biweekly through August 2022 (short break in May)

• Sequence of sessions detailed on main webpage
– Full workshop course description document/syllabus
– Useful resources for added self-directed learning included

• Registrants may use workshop’s Project ID & Casper core hours
– Please only submit non-production, test/debug scale jobs
– For non-workshop jobs, request an allocation. Easy access startup

allocations may be available for new faculty and graduate students.
– New NCAR HPC users should review our HPC Tutorials page

• Interactive sessions will share code via GitHub and JupyterHub
notebooks. More details will be shared prior to these sessions.

https://www2.cisl.ucar.edu/what-we-do/training-library/gpu-computing-workshops
https://docs.google.com/document/d/1Tovha_SA0-4QPdOkc1Z89KQgVNAUsTDLNa_PqeCAvhU/edit#heading=h.90nvn0bxldkr
https://docs.google.com/document/d/1nFqYyIXyjlBu0xj4wqlN9EYQjhQ93wJ8SoRDRyWh7ZY/edit
https://arc.ucar.edu/knowledge_base/72581396#StartingCasperjobswithPBS-GPUdevelopmentjobs
https://arc.ucar.edu/knowledge_base/75694351
https://www2.cisl.ucar.edu/what-we-do/training-library/hpc-tutorials

 GPU Community Engagement

Below are recommended community resources

• Join NCAR GPU Users Slack and #gpu_workshop_participants

• Consider joining other Slack communities or online spaces
– OpenACC and GPU Hackathon Slack workspace (NVIDIA managed)
– If you’re excited about Julia, they have a Slack and #GPU channel
– NCAR GPU Tiger Team for cutting edge updates and future directions
– Watch Stackoverflow tags for OpenACC, OpenMP, CUDA, or others

• Prepare an application for an upcoming GPU Hackathon

https://join.slack.com/t/ncargpuusers/shared_invite/zt-12nrvvnar-191KYVEu6I~IUDQuE~ofZw
https://www.openacc.org/community#slack
https://julialang.org/slack/
https://wiki.ucar.edu/display/gttwiki/GPU+Tiger+Team+Home
https://stackoverflow.com/questions/tagged/openacc
https://stackoverflow.com/questions/tagged/openmp
https://stackoverflow.com/questions/tagged/cuda
https://gpuhackathons.org/

Overview

• Basic Principles of Parallel Computing
• Terminology of Parallel Applications
• How Parallelization Enable High Performance Computing
• Primary Issues Encountered in Developing a Parallel Application

You don't need to know how to write code to understand these topics, but you
will get more out of this topic if you have a specific computation in mind. If you
have coded a serial example of your problem, you can
gather profiling information on it to determine the amount of time spent doing
different parts of it. It's those time-consuming parts that should be the target of
your parallelization efforts.

Overview

Basic Principles of Parallel Computing

Basic Principles of Parallel Computing

Why we need parallel computing?
• Scientific Computing

– Modern science problems are too big, time to solution is too long, the tasks are too many.

• High Performance Computing

– To stay ahead of the game, scientists are constantly chase high performance, pushing the
limit of the hardware.

• Parallel Computing

– Code efficiency quickly reaches the limit of the clock speed. The overall efficiency can not be
improved without running multiple instances of the code at the same time, both on device
level (threading/GPU) and node level (MPI)

Basic Principles of Parallel Computing

• Though parallel programming requires more time and effort
than serial programming, parallel computation is the only way
to leverage the enormous power of supercomputers like
Cheyenne/Derecho.

• Parallel programming is increasingly relevant for all computing
platforms; most personal computers (and even cell phones)
today include multiple processing cores and require parallel
programs to yield the best performance.

Basic Principles of Parallel Computing

The flagship of NCAR’s next gen supercomputer Derecho will feature:
• 320,000 AMD Milan processors for parallel computation,
• 2,500+ 3rd Gen AMD EPYC nodes,
• 82 4-way A100 SXM GPU nodes with 40GB of device memory

– 1,555 GB/s high-bandwidth memory rate
– 600 GB/s NVLink GPU interconnect

• Total 692 TB system host memory
• Derecho will offer 3.5x computational capacity vs Cheyenne

19.87 peak PetaFlops 5.34 peak PetaFlops

Basic Principles of Parallel Computing

Derecho - Next Generation Computing at NCAR

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

Terminology of Parallel Applications

Terminology of Parallel Applications

• Serial code uses a single thread of execution working on a single data
item at any one time.

• Parallel code has more than one concurrent process.
– Single thread of execution operating on multiple data items

simultaneously (vectorized thread on CPUs or block of threads
on GPUs)

– Multiple threads of execution in a single executable
– Multiple executables or tasks working on the same problem
– Any combination of the above

Terminology of Parallel Applications

• In the context of HPC, a task is any distinct stream of instructions and
memory address space issued by a parallel code. A task may run in
parallel with other tasks and may communicate with each other.

• MPI is a common interface standard used to perform communication
among tasks explicitly. An MPI process may be called a rank.
N tasks running at the same time can be N way parallelized.

• OpenMP is a programming model for launching a set of tasks.
– These tasks are called threads within a single process. In contrast

to MPI, all tasks in OpenMP use the shared memory on a single
system, i.e., they must share the same virtual address
space. Communication takes place through shared memory.

Terminology of Parallel Applications

Flynn’s Taxonomy - Classifying Compute Tasks

Used since 1966, this two-by-two table classifies compute tasks across
dimensions of Instruction Streams and Compute Streams. Each kind

of stream can be classified as single or multiple.

Terminology of Parallel Applications

Single Data Multiple Data

Single
Instruction

● SISD
● typical CPU thread

● SIMD
● vector processors
● GPU thread blocks

Multiple
Instruction

● MISD
● possibly set of filters
● fault tolerance and

redundancies

● MIMD
● cluster of nodes
● multi-core CPU

Flynn’s Taxonomy - Classifying Compute Tasks

Used since 1966, this two-by-two table classifies compute tasks across
dimensions of Instruction Streams and Compute Streams. Each kind

of stream can be classified as single or multiple.

Terminology of Parallel Applications

Single Data Multiple Data

Single
Instruction

● SISD
● typical CPU thread

● SIMD
● vector processors
● GPU thread blocks

Multiple
Instruction

● MISD
● possibly set of filters
● fault tolerance and

redundancies

● MIMD
● cluster of nodes
● multi-core CPU

Flynn’s Taxonomy - Classifying Compute Tasks

Used since 1966, this two-by-two table classifies compute tasks across
dimensions of Instruction Streams and Compute Streams. Each kind

of stream can be classified as single or multiple.

Terminology of Parallel Applications

Single Data Multiple Data

Single
Instruction

● SISD
● typical CPU thread

● SIMD
● vector processors
● GPU thread blocks

Multiple
Instruction

● MISD
● possibly set of filters
● fault tolerance and

redundancies

● MIMD
● cluster of nodes
● multi-core CPU

Flynn’s Taxonomy - Classifying Compute Tasks

Used since 1966, this two-by-two table classifies compute tasks across
dimensions of Instruction Streams and Compute Streams. Each kind

of stream can be classified as single or multiple.

Terminology of Parallel Applications

Single Data Multiple Data

Single
Instruction

● SISD
● typical CPU thread

● SIMD
● vector processors
● GPU thread blocks

Multiple
Instruction

● MISD
● possibly set of filters
● fault tolerance and

redundancies

● MIMD
● cluster of nodes
● multi-core CPU

Flynn’s Taxonomy - Classifying Compute Tasks

Used since 1966, this two-by-two table classifies compute tasks across
dimensions of Instruction Streams and Compute Streams. Each kind

of stream can be classified as single or multiple.

Terminology of Parallel Applications

Single Data Multiple Data

Single
Instruction

● SISD
● typical CPU thread

● SIMD
● vector processors
● GPU thread blocks

Multiple
Instruction

● MISD
● possibly set of filters
● fault tolerance and

redundancies

● MIMD
● cluster of nodes
● multi-core CPU

A node is a standalone physical computer
unit with a network connection that
typically runs its own instance of the
operating system.

Supercomputer clusters are composed of
nodes connected by a communications
network.

The nodes in a cluster like Cheyenne/Derecho
are packaged into units that can be mounted in a
dense configuration that provides
appropriate power, cooling, and network
connections.

Terminology of Parallel Applications

A Cluster is a collection of nodes that function in some way as a single resource.
They may be administered as a unit and provide a uniform environment for tasks to
run on the cluster.

On Cheyenne, the software installed on each node is identical, and access from
each cluster node to external resources is uniform.

Nodes of a cluster are normally assigned to users by a Scheduler, such as PBS or
Slurm. An assignment of a set of nodes for exclusive use by a user for a certain
amount of time is called a Job.

Terminology of Parallel Applications

A Grid is the software stack and
hardware infrastructure designed to
handle the technical and social
challenges of sharing resources across
networking and institutional
boundaries. A collaborative grid
network allows remote execution of
large simulations as well as sending
files or sharing virtual environments.

One of the major grids in the US is
XSEDE, wherein resources are
connected by a dedicated
high-performance communications
network spanning the country.

Terminology of Parallel Applications

• In Distributed Memory programming, each task owns part of the data,
and other tasks must send a message to the owner in order to update
that part of the data.

• For Cheyenne/Derecho, there are many nodes & memory associated with
one node is not directly accessible from another. A distributed memory
parallel program has at least one separate executable on each node.
Interface standards like Message-Passing Interface (MPI)
facilitate distributed memory programming for supercomputers.

Terminology of Parallel Applications

Shared Memory programming implies that all threads of execution within the same
parent task can uniformly address the same variables. When threads execute in
parallel, however, there is no guarantee for the order of the running threads.

Communication among threads is efficient since any changes to shared memory is
immediately visible to all threads, but the programmer must coordinate memory
reads and writes so that each thread receives the expected values from memory.

OpenMP, a common API for facilitating shared memory programming, includes
mechanisms to ensure that the above operations occur in the desired order.

Terminology of Parallel Applications

A shared memory computer has
multiple cores with access to the same
physical memory. The cores may be part
of multicore processor chips, and there may
be multiple processors within the computer.

If multiple chips are involved, access is not
necessarily uniform.

From the perspective of an individual core,
some physical memory locations have
lower latency or higher bandwidth than
others. This situation is called non-uniform
memory access (NUMA). Nearly all
modern computers rely on NUMA designs.

Terminology of Parallel Applications

NUMA Architecture

Terminology of Parallel Applications

Hybrid strategy
Using multithreaded tasks designed
with shared memory programming to
take advantage of multiple cores on a
single node while simultaneously
using distributed memory strategies
to coordinate with tasks on other
nodes.

Also known as hybrid programming,
this technique provides flexibility to
the programmer to map parallelism
that exists in the program onto the
characteristics of the machine.

Data Parallelism:
Each parallel worker applies the same operations to a different segment of data.
Each process does the same work on a unique piece of data.
Follow the "owner computes" principle. Divide the data among workers. Each
worker computes its own data.

Functional Parallelism, also called task parallelism:
Each parallel worker performs different operations on the data.
Each process performs a different "function" or executes a different code section.
Message-passing libraries (MPI) is the main communication tool among functions.

Terminology of Parallel Applications

OpenMP
MPI CUDA

OpenACC
do concurrent std::par

Terminology of Parallel Applications

How Parallelization Enables
High Performance Computing

How Parallelization Enables High Performance Computing

If the scale of your computation allows for shared memory programming, the
easiest way to exploit shared memory parallelism is to insert OpenMP/OpenACC
directives into your code to execute specific loops in parallel.
One advantage is that parallel code may still compile as a serial code; unless the
compiler is instructed to honor the OpenMP directives, it will ignore them and
produce a serial program. Also common is to explicitly use threads to create a new
shared memory parallel program based on an existing serial program. If you choose
to create and manage threads explicitly, ensure that access to shared data from
different threads is appropriately synchronized.

How Parallelization Enables High Performance Computing

Dependency is important to parallel programming because they are one of the
primary inhibitors to parallelism. One of the common places to find dependency
is the variable dependence. See the following two pseudo code sections:

 task 1 task 2
 ------ ------
 X = 2 X = 4

Y = X**2 Y = X**3

DO J = MYSTART, MYEND
 A(J) = A(J-1) * 2.0
END DO

Difficult to parallelize

Each iteration depends on the next
iteration, so two consecutive
iterations can’t run at the same time.

Easy to parallelize

Each iteration is independent.
Multiple iterations can run at the
same time.

How Parallelization Enables High Performance Computing

Exploiting Parallelism is essentially the most important thought process behind
parallel programming. One of the best places to exploit parallelism is the loop
structure. We can flatten or Collapse Nested Loops to generate more
parallelism to allow more threads working at the same time.

How Parallelization Enables High Performance Computing

Distributed Memory parallel programs are
much more difficult to write as simple
modifications of serial programs. The
communication between nodes need to be
managed by coordinating MPI commands.

In distributed memory programs, often only
one or a few tasks will be doing I/O.

The tasks responsible for I/O may need to
distribute and collect data from the
other tasks.

How Parallelization Enables High Performance Computing

• A program can also be parallelized by taking advantage of language
features, extensions, or libraries that are already capable of parallel
computation.

• Some higher-level programming languages support distributed arrays.
Languages that support distributed arrays take care of scattering and
gathering blocks of arrays as necessary.

• Computational libraries, such as ScaLAPACK, FFTW, PETSc, and the Intel
oneAPI Math Kernel Library (oneMKL), offer distributed memory parallel
algorithms.

• If possible, use existing libraries and software features that support parallel
computation. These tools are designed to handle common parallelization
needs in a general way, and they are subject to extensive testing.

• Leverage vendor support (Descriptive Parallelism), and community
collaboration (Hackathons).

How Parallelization Enables High Performance Computing

Primary Issues Encountered in
Developing a Parallel Application

Primary Issues Encountered in Developing a Parallel Application

• In parallel computing, efficiency is the proportion of simultaneously available
resources utilized by a computation. By definition, proper HPC code aims for the
highest possible efficiency. For computationally-intensive code, we usually focus
on whether every processor is always performing useful work for the algorithm.

• A serial program running alone seriously under utilizes a cluster node and will
waste your allocation.

Primary Issues Encountered in Developing a Parallel Application

• The ratio of FLoating-point OPerations per Second (FLOPS) to the peak
theoretical performance is a common way to report overall efficiency for parallel
code.

• The Peak Theoretical Performance is calculated with the assumption that
each processor core performs every possible floating-point operation during
each clock cycle.

Primary Issues Encountered in Developing a Parallel Application

Amdahl's Law

L = Wall Time of Linear/Serial Portion
P = Wall Time of Parallel Portion
N = number of task count.

Algorithm design/programming practice:
 Good: P >> L
 Bad: P << L

In terms of speedup, S, Amdahl’s Law states:

Primary Issues Encountered in Developing a Parallel Application

Strong Scaling:
Fix the size of the problem, finish the
job on as many resources as possible
with shortest wall time.

Weak Scaling:
Fix the workload on each task, finish a job
as large as possible with as many
resources as possible in the same amount
of wall time.

Evaluating parallelization effort and outcome: Scaling Behavior

Hybrid Case: Iterative optimization/evolution problem, weak scaling on the
system size, strong scaling within time step.

Primary Issues Encountered in Developing a Parallel Application

Thinking Big

Scaling up used to mean using 8, 16, or 32 cores, but now scaling up means
hundreds, thousands, or even hundreds of thousands of cores!

This requires different thinking because many programs that scale acceptably
on smaller machines will not perform well when scaled to large machines.

Primary Issues Encountered in Developing a Parallel Application

For traditional domain science codes. A parallelization strategy is to split each
iteration of an outer loop into separate computations and distribute these
computations among Parallel Tasks. Although the outermost parallelizable loop
in the program is one of the most important sites for scrutiny, simply spreading it
across tasks may not be the best design strategy for scalable parallel programs
due to data dependency and messaging overhead.

Dividing data and computations over tasks is Domain Decomposition; this is a
type of data parallelization, as discussed in this topic. If we think of the data
arranged in N-dimensional space, the outermost loop might be traverse one of
these dimensions. In that case, parallelizing on that loop involves slicing the
domain into strips one (or a few) data elements wide.

Primary Issues Encountered in Developing a Parallel Application

In small clusters with problems of modest size, nearly all of the time is
spent in computation. With computer systems like Cheyenne/Derecho that
have thousands of nodes, the computation may not be the only
time-consuming part of the job. Attention also needs to be paid to I/O
(both input and output) at the startup and shutdown of the job.

Ultimately I/O needs to be parallelized too. Furthermore, systems
programmers are constantly working to decrease startup times for MPI
and other software infrastructure. Issues like these are bound to assume
greater importance in the exascale era.

Primary Issues Encountered in Developing a Parallel Application

Additional Learning Resources

We only covered a small amount of parallel programming concepts.
Feel free to explore recommended material below for further details
and more in depth discussions.
• LLNL’s Introduction to Parallel Computing webpage
• Self-paced courses from NCSA and UIUC, hpc-training.org
• XSEDE repository of online learning resources & course catalog

To get a head start on GPU concepts…
• Document summary of Resources and NVIDIA Documentation
• UCAR curated collection of external learning resources, GDrive
• Other training courses offered and archived online

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://www.hpc-training.org/xsede/moodle/course/index.php?categoryid=11
https://www.xsede.org/web/xup/online-training
https://www.xsede.org/web/xup/training/course-catalog
https://docs.google.com/document/d/1nFqYyIXyjlBu0xj4wqlN9EYQjhQ93wJ8SoRDRyWh7ZY/edit#
https://drive.google.com/drive/folders/1e5cfjwIIiTogd3n894V6uwtKDs8wdAuo
https://docs.google.com/document/d/1p21EN3JrMxbARDJg9mnvSx0bYSyvqM2iKo2rgQARv5w/edit

THE END

Questions?

End

Additional resources in NCAR

Extra Slides

JupyterHub service on NCAR HPC resources:

Extra Slides

• Parallel in Python through different engines: DASK, SPARK
• Container effort on WRF and CESM
• Exascale computing, Leveraging community effort, Exascale

computing projects, such as HEFFTE, support by SPACK
• Supercomputing in commercial, AWE, Cloud bursting
• GPU programming trainings, community support, and Hackathons

Extra Slides

https://gpuhackathons.org/

