Job Scheduling with PBS Pro

Brian Vanderwende CISL Consulting Services

November 9, 2021

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

PBS Pro provides resources beyond the login nodes

- HPC compute nodes on Cheyenne
- High-throughput computing, high-memory, visualization, and GPGPU nodes on Casper
- JupyterHub jobs on both Cheyenne and Casper

Cheyenne and Casper each have their own unique PBS server that manages job scheduling. These servers are "peers" that can recognize each other:

You can now submit jobs to either system from any location on Cheyenne and Casper and create dependencies between them!

Why shouldn't I just run my script on a login node?

Login nodes are a **shared resource** and so we expect and enforce fair usage of CPU cores and memory. Your session may be terminated if you run resource-intensive applications. Use login nodes for:

- Script editing
- File movement
- Simple compiles (use 8 or less make jobs)
- Submitting jobs...

Anatomy of a PBS compute job

A PBS job is a pool of requested resources with which you can run a *batch* script of commands or *interactively* run commands within a shell / interface

In PBS, resources are defined either at the *job level* or the *chunk level*:

- **Chunk** setting defines the type of resources making up this particular portion (often N-nodes)
- Job setting applies to ALL resource chunks in the allocated pool

Chunk resources

- ncpus
- mpiprocs
- ompthreads
- mem
- ngpus
- cpu_type

Job resources

- walltime
- place
- gpu_type

Important PBS terminal commands to remember

Job management commands:

- qsub Submit batch scripts to a chosen job queue
- **qinteractive** Submit interactive resource requests to a Cheyenne queue
- execcasper Submit interactive resource requests to Casper queue
- qdel Delete (cancel or kill) a pending or running job

Job query commands:

- **qstat** Information about <u>recent</u> pending, running, or finished jobs
- **qhist** Historical information about finished jobs only

Starting a batch job on Cheyenne with qsub

Submit: qsub my_chey_job.pbs

- Any #PBS *directives* can be overridden by qsub arguments
- Batch job will start in a clean environment (with your ~/.profile or ~/.tcshrc settings loaded)
- Job-specific environment settings should go into the script
- Once submitted, job will wait in specified queue until resources are available

```
#!/bin/bash
#PBS -A PROJ0001
#PBS -N chey_batch_job
#PBS -j oe
#PBS -k oed
#PBS -q regular
#PBS -1 walltime=10:00:00
#PBS -1 select=1:ncpus=8:mpiprocs=2:ompthreads=4
```

```
### Initialize job environment for application
export TMPDIR=/glade/scratch/$USER/temp
mkdir -p $TMPDIR
module purge
module load ncarenv gnu/9.1.0 mpt/2.22
```

```
### Run hybrid OpenMP+MPI application
mpiexec_mpt omplace ./app
```

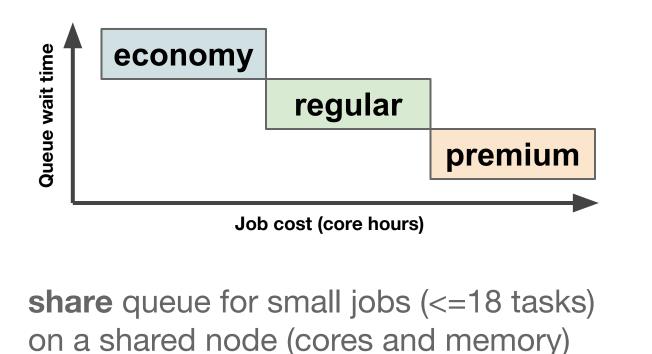
```
### Store job statistics in log file
qstat -f $PBS_JOBID
```

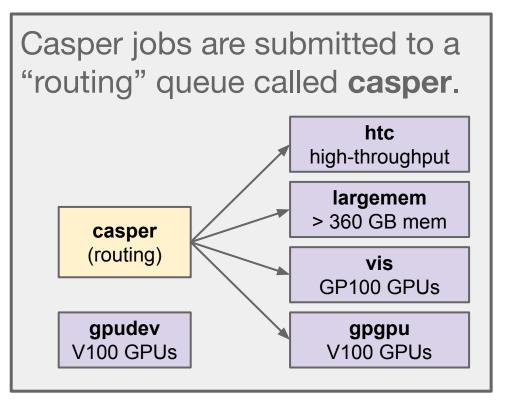

Interactive jobs start a shell on a compute node

Use **qinteractive** and **execcasper** to start interactive jobs on **Cheyenne** and **Casper** respectively.

- Default settings give you 1 CPU core using your native shell (bash or tcsh) with 1 hr walltime on the share queue or 6 hrs and 10 GB memory on casper.
- Custom PBS settings can be passed to either command and short-form settings (listed on right) are provided as well

--nchunks=N


- --ntasks=N
- --nthreads=N
- --mem=NGB
- --cpu=type
- --ngpus=1-8
- --gpu=type


These two calls to execcasper both request a single core with 20 GB of memory
cheyennel\$ execcasper -A PROJ0001 -1 select=1:ncpus=1:mem=20GB
cheyennel\$ execcasper -A PROJ0001 --mem=20GB

Queues may assign priority or route to a shared node

On Cheyenne, you may assign your job a priority and charge factor which are inversely proportional. All such jobs give you exclusive use of a full node.

NCAR

ICAR

Tailor your job by specifying custom resources

On Casper, all requested resources on nodes are exclusive to the job occupying them (using Linux control groups), except for gp100 GPUs

- If you need access to a GPU, you must specify an *ngpus* amount in your PBS select statement (and always provide a *gpu_type*).
- Always specify a per-chunk memory request for Casper jobs. If you exceed the requested amount, your program will use NVMe swap space and run *much slower*.
- If you do not specify *ompthreads*, the variable OMP_NUM_THREADS will be assigned to the *ncpus* amount.

Why aren't my jobs running?

- Queue limits wallclock limits (e.g., 12-hr for Cheyenne jobs), GPU limits (32 V100s), core limits (18 CPUs on share queue)
- **Resource conflicts** e.g., a job that requests gpu_type=gp100 and cpu_type=cascadelake; we have no nodes that satisfy both requirements
- Large requests asking for a large amount of popular resources (e.g., 32 V100 GPUs) will result in difficult to place jobs
- **Heavy usage** if the queue is busy, and you have submitted many jobs recently already, your relative priority will likely be low

Before you suspect a system issue, consider the conditions above and inspect the job using **qstat** for validity

Interacting with PBS as a JupyterHub user

JupyterHub provides you with a web-based compute environment for running Jupyter Notebooks and terminal sessions in NCAR systems.

Batch servers in JupyterHub spawn PBS jobs

JupyterHub jobs use core-hour resources; be mindful about stopping your servers when work is completed

• Casper login sessions spawn a PBS job too; please limit yourself to a single Casper login server at any one time

https://jupyterhub.hpc.ucar.edu/

A word about peer-submission and queue names...

If you submit a job to Casper from a Cheyenne login node (or vice versa), you must append the server name to the queue. Consider always appending the server name if you frequently use both systems.

qinteractive and *execcasper* will handle server specification for you!

Specify dependencies between jobs (and across servers!)

Use job dependencies to run subsequent jobs based on exit status of original job:

-W depend=<condition>:<jobid>

- Jobs are held until the dependency is satisfied
- Jobs are then **pending**, but still may wait for resources in queue

after - all listed jobs begin execution afterany - all listed jobs finish afterok - all listed jobs succeed afternotok - all listed jobs fail

Example using Bash syntax
Submit CFD jobs to Cheyenne and store job ids
cheyenne1\$ J1=\$(qsub -q regular run_ens1.pbs)
cheyenne1\$ J2=\$(qsub -q regular run ens2.pbs)

Submit data postprocessing job to Casper # eligible to run if original two jobs succeed cheyennel\$ qsub -q casper@casper-pbs -W depend=afterok:\$J1:\$J2 run proc.pbs

Querying active and recent jobs using peer-enabled qstat

qstat provides information on pending, running, held, and recently finished jobs. We cache output with a 10-second refresh rate to improve PBS performance.

qstat <jobid> - show single job
qstat <queue> - show jobs in queue
qstat -u <user> - show user's jobs
qstat -f <jobid> - show detailed info

qstat -x - include recent history

Show my jobs in wide format
cheyennel\$ qstat -w -u \$USER

Show all known jobs on casper queue
cheyennel\$ qstat -x casper@casper-pbs

qstat recognizes system names in addition to # PBS server names (these three are equivalent) cheyennel\$ qstat 12345 casper\$ qstat 12345.chadmin1.ib0.cheyenne.ucar.edu casper\$ qstat 12345.cheyenne

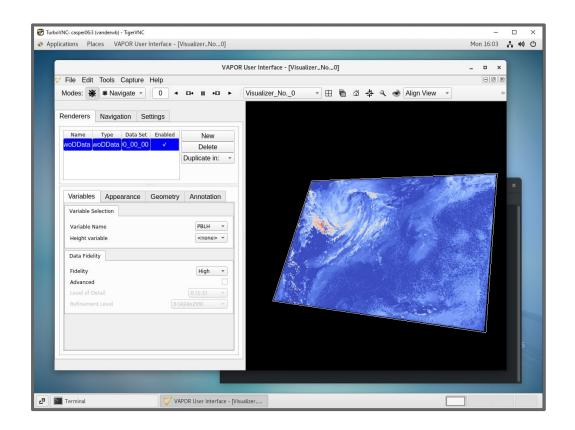
Getting historical records for past PBS jobs

CISL provides **qhist** on Cheyenne and Casper to query past jobs:

```
qhist [-d DAYS] [-p START-END] [-u USER] [-j JOBID] ...
```

- By default, **qhist** outputs all jobs from the current day, but has arguments to change time period and filter jobs by user, project, queue and more.
- **qhist** will only show you jobs from the native PBS server (e.g., Cheyenne jobs from Cheyenne nodes)

qhist allows you to quickly query CPU and memory usage of past jobs!


# Query	my jobs fro	om past we	ek on Caspe	er an	d fir	nd top 5	by memory	use	
casper\$	qhist -u \$U	JSER -p 20)210322-2021	.0326	-s n	memory	head -n 6		
Job ID	User	Queue	Nodes NCI	PUs N	GPUs	Finish	Mem (GB)	CPU (%)	Elap(h)
15259	vanderwb	htc	1	1	0	23-1942	10.0	2.0	0.08
15268	vanderwb	htc	1	1	0	23-1957	5.0	4.0	0.06
15337	vanderwb	htc	1	1	0	23-2043	5.0	3.0	0.08
15346	vanderwb	htc	1	1	0	23-2059	5.0	2.0	0.20
15057	vanderwb	htc	1	1	0	23-1523	1.0	12.0	0.20
	-			-	-				
# Get long-form output from the top job from above list									
casper\$ qhist -p 20210323 -j 15259 -1									
15259.casper-pbs									
User		vanderwb							
Queue									
Job Submit		2021-03-2	23T19:37:29						
• • • •									
		10.0							
Avg CPU (%)		2.0							
Waittime (h)		0.00							
Walltime (h)		6.00							
Elapsed (h)		0.08							
Job Name		STDIN							
Exit	Status =	0							
Accou	unt =	SCSG0001							
Resources		1:ncpus=1	l:mpiprocs=1						
Node List		crhtc62							

qcmd and vncmgr for specialized job submissions

CISL maintains two additional job submission scripts for special cases:

qcmd - run a non-interactive job that outputs directly to the terminal (e.g. a CESM build) **vncmgr** - start a VNC remote desktop on a Casper gp100 node for graphically-intensive work

cheyenne\$ qcmd -A <project> -- ./case.build
cheyenne\$ vncmgr create -A <project> [SESSION]

NCAR

Some recommendations for user initialization files

Jobs will initialize a shell using ~/.profile (bash) or ~/.tcshrc (tcsh/csh)

- You can set default project codes to be used by:
 - qinteractive and qcmd export PBS_ACCOUNT=<project>
 - execcasper and vncmgr export DAV_PROJECT=<project>
- Don't include interactive commands in your init files as they can block batch job execution
- Init files are read by both Cheyenne and Casper jobs, so use if statements to limit execution of system-specific commands (\$NCAR_HOST)
- In general, only put commands relevant to *all* anticipated workflows in your initialization files

Getting assistance from the CISL Help Desk

https://www2.cisl.ucar.edu/user-support/getting-help

- Walk-in: ML 1B Suite 55
- Web: <u>http://support.ucar.edu</u>
- Phone: 303-497-2400

Specific questions from today and/or feedback:

• Email: vanderwb@ucar.edu

