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ZETA = ZEro-copy Trans-petascale Architecture



Application developer’s view of 
exascale technology 

CHANGE

Credit: Fast and Furious 8



New technologies, faster science?
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Preformance Portability?
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Project Zeta Goals
• Focus on a design in Zeta that:

– Enhances the end-to-end rate of science throughput
– Reduces costs and/or enhance reliability

• Harness emerging technologies for Zeta like:  
– Accelerators (GPUs)
– New memory technologies (stacked, NV memory)
– Machine learning techniques (DL)

• Prepare application/workflow codes for Zeta: 
– scalability and performance
– Performance-portability



Existing Architecture
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Yellowstone: Sustained fraction of FP peak was 1.57%
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Y(:) = Y(:) + a*X(:) – a.k.a. DAXPY

What’s wrong with our performance?
2.

5X
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Knowing your limits: 
the roofline diagram

MOM6 barotropic stencil 
0.125 flop/byte (DP)

Source: Barba and Yokota, SIAM News, Volume 46, Number 6, July/August 2013 

RBF-FD SWE Model
0.5 flop/byte (DP)



HOMME (NE=8, PLEV=70, qsize=135)

75% reduction in cost!

Xeon Phi is 1.9x faster than Xeon! 



Simulation rate for HOMME on Xeon and KNL

Too slow for climate simulations!

Marginal for climate!

Good simulation rates!

30% cost of 20 SYPD

30% cost of 5  SYPD

30% cost of 1 SYPD

100 km

25 km

12 km

Superlinear speedup due to L3 cache on Xeon
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Optimizing Stencils for different architectures



Insufficient 
Workload 

Parallelism

Sufficient 
Workload

Parallelism

CISL experiences with directive-based portability:
RBF-FD shallow water equations:

2D unstructured stencil 

• CI roofline model generally 
predicts performance well, even 
for more complicated algorithms.

• Xeon performance crashes to 
DRAM BW limit when cache size is 
exceeded, with some state reuse.

• Xeon Phi (KNL) HBM memory is 
less sensitive to problem size that 
Xeon, saturates with CI figure.

• NVIDIA Pascal P100 performance 
fits CI model GPU’s require higher 
levels of parallelism to reach 
saturation.
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MPAS 5 Performance

Code currently being upgraded to MPAS 5.2

Execution time for single timestep (in seconds)
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Kernels
Broadwell Node Pascal P100 Speed Up

120 Km 60 Km 120 Km 60 Km 120 Km 60 Km

Integration Setup 1.21E-02 5.31E-02 1.86E-03 5.65E-03 6.51 9.40

Moist coefficients 2.08E-03 9.28E-03 1.49E-03 5.49E-03 1.40 1.69

imp_coef 4.66E-03 1.28E-02 3.20E-03 1.00E-02 1.46 1.27

dyn_tend 3.91E-03 1.41E-01 1.41E-02 4.65E-02 0.28 3.03

small_step 3.20E-02 1.44E-02 1.08E-03 3.81E-03 29.67 3.77

acoustic_step 3.70E-03 3.78E-02 4.70E-03 1.81E-02 0.79 2.09

large_step 1.03E-02 5.09E-02 2.78E-03 1.04E-02 3.71 4.90

diagnostics 1.63E-02 8.22E-02 4.53E-03 1.75E-02 3.59 4.68

Time step Loop 0.92 3.49 0.37 1.26 2.48 2.76



NCAR performance portability experiences…

• Refactoring code for vectorization can yield ~2.5-4x
performance improvements for x86 multi-/many-
cores. We’ve been co-designing a vectorizing ifort….

• Directive-based parallelism provides portability 
across Xeon, Xeon-Phi and GPU. Maintaining single 
source feasible for many cases (RBFs & MPAS). 

• OpenACC is in a sense a “domain specific language”. 
We’ve been co-designing OpenACC with PGI…

• Would be nice if a std emerge (e.g. OpenMP)
• Portability across 3 architectures is all great but…
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CESM/CMIP6 Workflow
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NCAR Analytics Accomplishments: 
The Low Hanging Fruit

• Parallel tools: PyReshaper, PyAverager, PyConform
• Parallelizing PyReshaper yielded ~6.5x on Edison
• NAND-based tests 

– Py{*} analytics 2.5-6x
– subsetting (RDA) 20x 

• Automating workflows (Cycl) saved O(3x)
• 5x storage volume savings through lossy data 

compression (discussed yesterday).



Unsupervised Learning:
Generative Adversarial Networks
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Unsupervised method of learning complex feature representations from data
Requires 2 deep neural networks

Discriminator: determines which samples are 
from the training set and which are not

Generator: Creates synthetic examples 
similar to training data to fool discriminator 

Both networks have a “battle of wits” either to the death or until the 
discriminator is fooled often enough

Advantages
• Unsupervised pre-training: learn features without needing a large labeled dataset
• Dimensionality reduction: reduce image to smaller vector
• Learns sharper, more detailed features than auto-encoder models
• Do not need to specify a complex loss function Credit: Princess Bride



Pros and cons of building DL emulators
• Pros

– Drafts behind DL-driven technology
– May be less (80x?) computationally intensive 
– Deep Learning leverages frameworks. 
– Less code to develop (code is in the weights and the 

network design)
• Cons

– Potential loss of understanding of the physical basis of 
results.

– Over-fitting, curse of dimensionality, etc. Kind of an art.
– Not clear how conservation laws/constraints are preserved 

in DL systems.
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Zeta Architecture
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Thanks!



Current supercomputers struggle 
on HPCG relative to HP Linpack:

9/20/20
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Processor flops/byte: 
trending upwards
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Energy usage for HOMME on Xeon 
and Xeon Phi @ 100 km
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