
Accelerating MURaM on GPUs using OpenACC

2019 Multicore9 Workshop

UDEL: Eric Wright, Sunita Chandrasekaran

NCAR: Shiquan Su, Cena Miller, Supreeth Suresh, Matthias Rempel, Rich Loft

Max Planck Institute for Solar System Research: Damien Przybylski

Contact: efwright@udel.edu

1September 25th & 26th, 2019, National Center for Atmospheric Research (NCAR) Mesa Lab in Boulder, Colorado

Outline

• MURaM Introduction

• OpenACC Introduction

• Development Tools

• Development Roadblocks

• Results

2

MURaM (Max Planck University of Chicago Radiative MHD)

• The primary solar model used for simulations of the
upper convection zone, photosphere and corona

• Jointly developed and used by HAO, the Max Planck
Institute for Solar System Research (MPS) and the
Lockheed Martin Solar and Astrophysics Laboratory
(LMSAL)

• The Daniel K. Inouye Solar Telescope (DKIST), a ~$300M
NSF investment, is expected to advance the resolution of
ground based observational solar physics by an order of
magnitude

• Requires at least 10-100x increase in computing power
compared to current baseline

3

MURaM simulation of solar granulation

Physics of the MURaM Code
• Science target

– Realistic simulations of the coupled solar
atmosphere

– Detailed comparison with available observations
through forward modeling of synthetic observables

• Implemented Physics
– Single fluid MHD
– 3D radiative transfer, multi-band + scattering
– Partial ionization equation of state
– Heat conduction
– Optically thin radiative loss
– Ambipolar diffusion

• Under development
– Non-equilibrium ionization of hydrogen

4

Comprehensive model of entire life cycle of a solar prominence
(Cheung et al 2018)

Why OpenACC?

5

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
(CUDA, OpenCL)

Maximum

Flexibility

OpenACC,

OpenMP

Directives

Incremental, Enhanced

Portability

3 Ways to program CPU-GPU Architectures

GPU Development and Tools

9

Development Cycle

10

Analyze

ParallelizeOptimize

AnalyzeName Routine Summary:
Broadwell
(v4) core:

(sec)

TVD Diffusion
Update diffusion scheme - using TVD slope + flux

limiting.
7.36812

Magnetohydrodyna
mics

Calculate right hand side of MHD equations. 6.26662

Radiation Transport
Calculate radiation field and determine heating

term (Qtot) required in MHD.
5.55416

Equation of State
Calculate primitive variables from conservative

variables. Interpolate the equation of state tables.
2.26398

Time Integration Performs one time integration. 1.47858

DivB Cleaner Clean any errors due to non-zero div(B). 0.279718

Boundary
Conditions

Update vertical boundary conditions. 0.0855162

Grid Exchange Grid exchanges (only those in Solver) 0.0667914

Alfven Speed
Limiter

Limit Maximum Alfven Velocity 0.0394724

Synchronize
timestep

Pick minimum of the radiation, MHD and diffusive
timesteps.

4.48E-05

NVPROF: NVIDIA GPU Profiler

11
https://devblogs.nvidia.com/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/

https://devblogs.nvidia.com/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/

• Profilers give detailed
information/feedback about code
execution

• For this work, we used NVIDIA’s
GPU enabled profiler too:
NVPROF

https://devblogs.nvidia.com/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/
https://devblogs.nvidia.com/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/

CUPTI (CUDA Profiling Tools Interface)

12

• Annotate code to
give additional
profiler feedback

CUDA Occupancy Calculator

13
https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/

https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/

PCAST (PGI Compiler Assisted Software Testing)

• Automated testing features for PGI compiler
• Able to do autocompare (sometimes) to make kernel debugging much

easier
• In our case, we used API calls to do some checking manually, but

allowed for easy code testing after

14

$ pgcc -ta=tesla:autocompare -o a.out example.c

$ PGI_COMPARE=summary,compare,abs=1 ./a.out
PCAST a1 comparison-label:0 Float

idx: 0 FAIL ABS act: 8.40187728e-01 exp: 1.00000000e+00 tol: 1.00000001e-01
idx: 1 FAIL ABS act: 3.94382924e-01 exp: 1.00000000e+00 tol: 1.00000001e-01
idx: 2 FAIL ABS act: 7.83099234e-01 exp: 1.00000000e+00 tol: 1.00000001e-01
idx: 3 FAIL ABS act: 7.98440039e-01 exp: 1.00000000e+00 tol: 1.00000001e-01

Roadblocks

15

CUDA Occupancy Report

16

240x160x160 Dataset

Kernel Name Theoretical
Occupancy

Achieved
Occupancy

MHD 25% 24.9%

TVD 31% 31.2%

CONS 25% 24.9%

Source_Tcheck 25% 24.9%

Radiation Transport

Driver 100% 10.2%

Interpol 56% 59.9%

Flux 100% 79%

RTS Data Dependency Along Rays

17

● Data dependency is along a plane for each octant,angle combo.

● Depends on resolution ratio, not known until run-time.

● Number of rays per plane can vary.

Vögler, Alexander, et al. "Simulations of magneto-convection in the solar photosphere-Equations, methods, and results of the MURaM
code." Astronomy & Astrophysics 429.1 (2005): 335-351.

Solving RTS Data Dependency

• We can deconstruct the 3D grid into a
series of 2D slices

• The direction of the slices is dependent
on the X,Y,Z direction of the ray

• Parallelize within the slice, but run the
slices themselves serially in
predetermined order

18

Profiler driven optimizations

19

Results

20

Experimental Setup

• NCAR Casper system

– 28 Supermicro nodes featuring Intel Skylake processors

– 36 cores/node

– 384GB memory/node

– 4/8 NVIDIA V100 GPUs/node

– PGI 19.4, CUDA 10

21

Results: CPU vs GPU

22

Routine GPU time CPU time Speedup

RTS 0.361 0.230 0.637

MHD 0.108 0.160 1.48x

TVD 0.056 0.066 1.17x

EOS 0.031 0.071 2.29x

BND 0.004 0.007 1.75x

INT 0.050 0.071 1.42x

DST 0.163 0.031 0.19x

DIVB 0.076 0.029 0.38x

TOTAL 0.853 0.701 0.82x

• Single NVIDIA V100 GPU

• Dual Socket Intel Skylake CPU (36 core)

• Measuring time taken for average timestep
with no file I/O

• 192x128x128 sized dataset

23

Strong Scaling

24

Weak Scaling

25

Summary
• MURaM

– Single fluid MHD
– 3D radiative transfer, multi-band + scattering
– Partial ionization equation of state
– Heat conduction
– Optically thin radiative loss
– Ambipolar diffusion

• Use OpenACC to port to GPU with directives
– Incremental changes
– Maintain single C++ source code

• Tools: NVPROF, CUPTI, CUDA Occupancy Calculator, PGI PCAST

26
Contact: efwright@udel.edu

