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MURaM (Max Planck University of Chicago Radiative I\/IHD)

The primary solar model used for simulations of the
upper convection zone, photosphere and corona

Jointly developed and used by HAO, the Max Planck
Institute for Solar System Research (MPS) and the

Lockheed Martin Solar and Astrophysics Laboratory
(LMSAL)

The Daniel K. Inouye Solar Telescope (DKIST), a ~S300M
NSF investment, is expected to advance the resolution of
ground based observational solar physics by an order of
magnitude

Requires at least 10-100x increase in computing power
compared to current baseline
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| Physics of the MURaM Code

— Realistic simulations of the coupled solar
atmosphere

— Detailed comparison with available observations
through forward modeling of synthetic observables

 Implemented Physics
— Single fluid MHD
— 3D radiative transfer, multi-band + scattering
— Partial ionization equation of state
— Heat conduction
— Optically thin radiative loss
— Ambipolar diffusion

 Under development
— Non-equilibrium ionization of hydrogen

M. C. M. Cheung, M. Rempel et al. 2018, Nature Astronomy

Comprehensive model of entire life cycle of a solar prominence
(Cheung et al 2018)
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Why OpenACC?
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3 Ways to program CPU-GPU Architectures
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ANSYS FLUENT

We've effectively used > For VASP, Openy the way OpenACC made it practical to
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GPU Development and Tools
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Development Cycle

Broadwell
Name Routine Summary: (v4) core:
(sec)
TVD Diffusion Update diffusion sch(?m.e.- using TVD slope + flux 7 36812
limiting.
Magnetror]k;zjrodyna Calculate right hand side of MHD equations. 6.26662
. Calculate radiation field and determine heating
Radiation Transport term (Qtot) required in MHD. 5.55416
. Calculate primitive variables from conservative
Equation of State variables. Interpolate the equation of state tables. 2.26398
Time Integration Performs one time integration. 1.47858
DivB Cleaner Clean any errors due to non-zero div(B). 0.279718
Bourjd-ary Update vertical boundary conditions. 0.0855162
Conditions
Grid Exchange Grid exchanges (only those in Solver) 0.0667914
Alfven Speed Limit Maximum Alfven Velocity 0.0394724
Limiter
Synchronize Pick minimum of the radiation, MHD and diffusive 4.48E-05
timestep timesteps. '

[\

Optimize

Analyze

Parallelize
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NVPROF: NVIDIA GPU Profiler

c o |y &g S v A LR R
© nbody.nvprof & nbody-analysis.nvprof 2 =0
1409 s 141s 14115 14125 14135
~| [0] Tesla K20c
= Context 2 (CUDA)
— Compute
T 100.0% void integr...
= Streams
Default
= ] GeFores GTX 680
=0

CAnalysis 22 0. B Console 5 Settings | (ol Detalls
Results
S DA Asaiitin A I Kernel Performance Is Bound By Memory Bandwidth
: iiominituinifaien s For device "Tesla K20¢" the kernel's compute utilization is significantly lower than its memory

2. Performance-Critical Kernels  utilization. These utilization levels indicate that the performance of the kernel is most likely being
limited by memory bandwidth.

3. Compute, Band...or Latency B

L ght
ndicate that [Y"L- performance of k“:'-:e
"void integrateBodies<float>" is most
likely limited by memory bandwidth Memory operations
Il Control-flow operations
Arithmetic operations

I Memory (System)

% Utilization

4. Instruction and Memory Later

5. Compute Resources

6. Memory Bandwldth

https://devblogs.nvidia.com/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/

* Profilers give detailed
information/feedback about code
execution

* For this work, we used NVIDIA’s
GPU enabled profiler too:
NVPROF
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CUPTI (CUDA Profiling Tools Interface)

= Process "mhd3dx" (17612)
= Thread 2990784768
OpenACC
Driver API
= Markers and Ranges
Profiling Overhead
= [0] Tesla v100-PCIE-32CB
= Context 1 (CUDA)
7 MemCpy (HtoD)
-7 MemCpy (DtoH)
= Compute
-~V 348% MHD_Residu..
=Y 29.1% TVDIlimit_27..
- ¥ 12.8% RTS:driver_1...
-7 6.8% ConsToPrim_1...
- Y 5.6% Source_Integr...
-7 53% RTScinterpol_.
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* Annotate code to
give additional
profiler feedback
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CUDA Occupancy Calculator

Multiprocessor Warp Occupancy
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https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
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PCAST (PGl Compiler Assisted Software Testing)

 Automated testing features for PGI compiler

* Able to do autocompare (sometimes) to make kernel debugging much
easier

* |n our case, we used API calls to do some checking manually, but
allowed for easy code testing after

$ pgcc -ta=tesla:autocompare -o a.out example.c

$ PGI_COMPARE=summary,compare,abs=1 ./a.out

PCAST al comparison-label:0 Float
idx: @ FAIL ABS act: 8.40187728e-01 exp: 1.00000000e+00 tol: 1.00000001e-01
idx: 1 FAIL ABS act: 3.94382924e-01 exp: 1.00000000e+00 tol: 1.00000001e-01
idx: 2 FAIL ABS act: 7.83099234e-01 exp: 1.00000000e+00 tol: 1.00000001le-01
idx: 3 FAIL ABS act: 7.98440039e-01 exp: 1.00000000e+00 tol: 1.00000001le-01




NIVERSITY o
EIAWARE

Roadblocks
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CUDA Occupancy Report

240x160x160 Dataset

Driver 100% 10.2%

Interpol 56% 59.9%
Flux 100% 79%
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RTS Data Dependency Along Rays
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Figure 4.1: The intensity at gridpoint F is obtained by solving the transfer Figure 4.2: The walking order of the Short Characteristics method in a 2D grid
o b ‘ : 4 ) 1a. i g : Y . - ) :
equation along the short characteristic EF. The intensity at the upwind point fOIi 4 Ié?y direction pom.tmg mto the_ upper right ql_ladral%t' Black circles represent
E is interpolated from the (already known) intensity values at the surrounding gridpoints on the upwind boundaries, where the intensity values are assumed to
gridpoints, A to D. be known.

. Data dependency is along a plane for each octant,angle combo.
. Depends on resolution ratio, not known until run-time.
. Number of rays per plane can vary.

Vogler, Alexander, et al. "Simulations of magneto-convection in the solar photosphere-Equations, methods, and results of the MURaM
code." Astronomy & Astrophysics 429.1 (2005): 335-351.
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Solving RTS Data Dependency

* We can deconstruct the 3D grid into a
series of 2D slices

* The direction of the slices is dependent
on the X,Y,Z direction of the ray

e Parallelize within the slice, but run the
slices themselves serially in
predetermined order

-
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*driver.nvvp

9016.9.95 ms

Profiler driven optimizations

§ *gpu_i_n2.nvvp 2
9016.9?75 ms 901?!“5 9017.

acc compute construct@rt.cc:1242

acc enqueue launch@rt.cc:1242

cuLaunchKernel

RTS:driver_1242 gpu(double...

9017.005 ms 9017.0075 ms

acc compute construct@rt.cc:1242

9017.01 ms

acc enqueue launch@rt.cc:1242

cuLaunchKernel

RTS::driver 1242 gpu(doubl...

RTS::driver_1242 gpu(double...

m

RTS:driver 1242 gpu(doubl...
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Experimental Setup

* NCAR Casper system
— 28 Supermicro nodes featuring Intel Skylake processors
— 36 cores/node
— 384GB memory/node
— 4/8 NVIDIA V100 GPUs/node
— PGI 19.4, CUDA 10

21
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Results: CPU vs GPU

Routine GPU time CPUtime Speedup

RTS 0.361  0.230 0.637
MHD 0.108 | 0.160 1.48x * Single NVIDIA V100 GPU
TVD 0.056 | 0.066 1.17x
* Dual Socket Intel Skylake CPU (36 core)
EOS 0.031  0.071 2.29x
BND 0.004 1 0.007 1.75x * Measuring time taken for average timestep
INT 0.050 0.071 1.42x with no file I/O
DST 0.163 | 0.031 0.19x
e 192x128x128 sized dataset
DIVB 0.076 | 0.029 0.38x

TOTAL 0.853 0.701 0.82x
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MURaM Scaling
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Strong Scaling

Strong Scaling, Casper V100
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Weak Scaling

Weak Scaling, Casper V100
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Summary

 MURaM
— Single fluid MHD
— 3D radiative transfer, multi-band + scattering
— Partial ionization equation of state
— Heat conduction
— Optically thin radiative loss
— Ambipolar diffusion

* Use OpenACC to port to GPU with directives
— Incremental changes
— Maintain single C++ source code

e Tools: NVPROF, CUPTI, CUDA Occupancy Calculator, PGI PCAST

Contact: efwright@udel.edu
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