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MURaM (Max Planck University of Chicago Radiative MHD)

• The primary solar model used for simulations of the 
upper convection zone, photosphere and corona

• Jointly developed and used by HAO, the Max Planck 
Institute for Solar System Research (MPS) and the 
Lockheed Martin Solar and Astrophysics Laboratory 
(LMSAL)

• The Daniel K. Inouye Solar Telescope (DKIST), a ~$300M 
NSF investment, is expected to advance the resolution of 
ground based observational solar physics by an order of 
magnitude

• Requires at least 10-100x increase in computing power 
compared to current baseline
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MURaM simulation of solar granulation



Physics of the MURaM Code
• Science target

– Realistic simulations of the coupled solar 
atmosphere

– Detailed comparison with available observations 
through forward modeling of synthetic observables

• Implemented Physics
– Single fluid MHD
– 3D radiative transfer, multi-band + scattering
– Partial ionization equation of state
– Heat conduction
– Optically thin radiative loss
– Ambipolar diffusion

• Under development
– Non-equilibrium ionization of hydrogen
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Comprehensive model of entire life cycle of a solar prominence 
(Cheung et al 2018)



Why OpenACC?
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Applications

Libraries
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3 Ways to program CPU-GPU Architectures





GPU Development and Tools
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Development Cycle
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Analyze

ParallelizeOptimize

AnalyzeName Routine Summary:
Broadwell 
(v4) core: 

(sec)

TVD Diffusion
Update diffusion scheme - using TVD slope + flux 

limiting.
7.36812

Magnetohydrodyna
mics

Calculate right hand side of MHD equations. 6.26662

Radiation Transport
Calculate radiation field and determine heating 

term (Qtot) required in MHD.
5.55416

Equation of State
Calculate primitive variables from conservative 

variables. Interpolate the equation of state tables.
2.26398

Time Integration Performs one time integration. 1.47858

DivB Cleaner Clean any errors due to non-zero div(B). 0.279718

Boundary 
Conditions

Update vertical boundary conditions. 0.0855162

Grid Exchange Grid exchanges (only those in Solver) 0.0667914

Alfven Speed 
Limiter

Limit Maximum Alfven Velocity 0.0394724

Synchronize 
timestep

Pick minimum of the radiation, MHD and diffusive 
timesteps.

4.48E-05



NVPROF: NVIDIA GPU Profiler
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https://devblogs.nvidia.com/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/

https://devblogs.nvidia.com/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/

• Profilers give detailed 
information/feedback about code 
execution

• For this work, we used NVIDIA’s 
GPU enabled profiler too: 
NVPROF

https://devblogs.nvidia.com/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/
https://devblogs.nvidia.com/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/


CUPTI (CUDA Profiling Tools Interface)
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• Annotate code to 
give additional 
profiler feedback



CUDA Occupancy Calculator
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https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/

https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/


PCAST (PGI Compiler Assisted Software Testing)

• Automated testing features for PGI compiler
• Able to do autocompare (sometimes) to make kernel debugging much 

easier
• In our case, we used API calls to do some checking manually, but 

allowed for easy code testing after

14

$ pgcc -ta=tesla:autocompare -o a.out example.c

$ PGI_COMPARE=summary,compare,abs=1 ./a.out
PCAST a1 comparison-label:0 Float

idx: 0 FAIL ABS  act: 8.40187728e-01 exp: 1.00000000e+00 tol: 1.00000001e-01
idx: 1 FAIL ABS  act: 3.94382924e-01 exp: 1.00000000e+00 tol: 1.00000001e-01
idx: 2 FAIL ABS  act: 7.83099234e-01 exp: 1.00000000e+00 tol: 1.00000001e-01
idx: 3 FAIL ABS  act: 7.98440039e-01 exp: 1.00000000e+00 tol: 1.00000001e-01



Roadblocks
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CUDA Occupancy Report
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240x160x160 Dataset

Kernel Name Theoretical 
Occupancy

Achieved 
Occupancy

MHD 25% 24.9%

TVD 31% 31.2%

CONS 25% 24.9%

Source_Tcheck 25% 24.9%

Radiation Transport

Driver 100% 10.2%

Interpol 56% 59.9%

Flux 100% 79%



RTS Data Dependency Along Rays
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● Data dependency is along a plane for each octant,angle combo.

● Depends on resolution ratio, not known until run-time.

● Number of rays per plane can vary.

Vögler, Alexander, et al. "Simulations of magneto-convection in the solar photosphere-Equations, methods, and results of the MURaM
code." Astronomy & Astrophysics 429.1 (2005): 335-351.



Solving RTS Data Dependency

• We can deconstruct the 3D grid into a 
series of 2D slices

• The direction of the slices is dependent 
on the X,Y,Z direction of the ray

• Parallelize within the slice, but run the 
slices themselves serially in 
predetermined order
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Profiler driven optimizations
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Results
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Experimental Setup

• NCAR Casper system

– 28 Supermicro nodes featuring Intel Skylake processors

– 36 cores/node 

– 384GB memory/node

– 4/8 NVIDIA V100 GPUs/node

– PGI 19.4, CUDA 10
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Results: CPU vs GPU
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Routine GPU time CPU time Speedup

RTS 0.361 0.230 0.637

MHD 0.108 0.160 1.48x

TVD 0.056 0.066 1.17x

EOS 0.031 0.071 2.29x

BND 0.004 0.007 1.75x

INT 0.050 0.071 1.42x

DST 0.163 0.031 0.19x

DIVB 0.076 0.029 0.38x

TOTAL 0.853 0.701 0.82x

• Single NVIDIA V100 GPU

• Dual Socket Intel Skylake CPU (36 core)

• Measuring time taken for average timestep
with no file I/O

• 192x128x128 sized dataset
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Strong Scaling
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Weak Scaling
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Summary 
• MURaM

– Single fluid MHD
– 3D radiative transfer, multi-band + scattering
– Partial ionization equation of state
– Heat conduction
– Optically thin radiative loss
– Ambipolar diffusion

• Use OpenACC to port to GPU with directives
– Incremental changes
– Maintain single C++ source code

• Tools: NVPROF, CUPTI, CUDA Occupancy Calculator, PGI PCAST
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