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NASA's new DSCOVR sate




Overview

» Brief history of climate modeling and its future
* Brief discussion of computational methods

* What is in the present models

+ What are climate change simulations telling us.

» Paris meeting on cutting GHG emissions



The next NASA satellite
videos give insight to how the
climate is changing and the
intferaction of vegetation on
the carbon cycle.

Credit to the NASA Aqua instrument:
Tom Pagano and colleagues at JPL



The atmospheric carbon dioxide and

vegetation connection!




The Climate and Earth
System Modeling Story



Laws of Physics, Chemistry, and Biology

» Equations govern the dynamics of
atmosphere, ocean, vegetation, and sea ice

- Equations put into a form that can be solved
on modern supercomputer systems

» Physical processes such as precipitation,
radiation (solar and terrestrial), vegetation,
boundary transfers of heat, momentum, and
moisture at earth's surface are included

» Forcings: Greenhouse gases (GHGs),
Volcanic, Solar variations



Mathematical equations (known since 1904)
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Late 1950s and Early 1960s Climate Modeling

groups
S. Manabe
GFDL J. Smagorinsky
Y.Mintz
UCLA A. Arakawa
= C.Leith
LLNL ' E s
PA. Kasahara
CORICAR ___ W. Washington

From Dave Randall
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The Community Earth System Model (CESM)
is becoming more complete

Modeling the Climate System

. Includes the Atmosphere,
Land, Oceans, Ice, and Biosphere

Stratus Clouds

Atmospheric Model Layers

A DOE and NSF
supported activity



Timeline of Climate Model Development

Mid-1960s Mid 1970s-1980s 1990s Present Day 2000-2010
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Atmospheric Grids
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Figure V.1. A variable resolution grid
based on a Spherical Centroidal Voronoi
Tesselation.

From C. Hannay, NCAR
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Vertical 6rid

- Vertical resolution is also

important for quality of simulations

- Levels are not equally spaced
(levels are closer near surface and

hear tropopause where rapid
changes occurs)

* In CAM™: “hybrid" coordinate

- bottom: sigma coordinate (follows

topography)

- Top: pressure coordinate

- middle: hybrid sigma-pressure

*CESM Atmospheric Model
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NASA/Goddard
animation showing key
tropospheric aerosols in a
10 km resolution model:
Organic and black aerosols,
dust, sulfates, and
sea salt aerosols






Tropical stgrms, hurricanes, and intense hurricanes
for Righ resolution (25 km) atmospheric
odel(CAM5) M.|\Wehner, DOE L
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Examples of Climate Change Studies

» 20™ and 215 century simulations for IPCC
» Single forcing simulations

* Hurricane and tropical storm changes
(First time simulated and used in
assessments)

- C

osing Bering strait

.k

eat waves, etc.

* Model development for both specified
ocean temperature and fully coupled model



Probability of US heat Waves Affected by
a Subseasonal Planetary Wave Pattern:
Prediction 15-20 days in Advance

Haiyan Teng, Grant Branstator, Hailan Wang, Jerry Meehl, and
Warren Washington, (2013) Nature Geoscience



The Warmest Year on Record

Parts of the eastern United States were cooler than average last year, but globally 2014 was the warmest year in
recorded history.

How far above or below average temperatures were in 2014
Compared with the average from 1951 to ‘30

-1 8] +1 2 +3 +43°C MNLA.
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Average global surface air temperature w *5
Compared with the average from 1901 to 2000
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Sources: NASA; National Oceanic and Atmospheric Administration

By The Mew York Times



First 6 months of 2015
are warmest ever in
recorded history




Temperature Anomaly (C)

Monthly Global Average lemperature 1n July
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Trend=0.67 (C/Century)
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Base Line : 1981-2010 Average

Japan Meteorological Agency
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Year

Anomalies are deviation from baseline (1981-2010 Average).

The black thin line indicates surface temperature anomaly of each year.
The blue line indicates their 5-year running mean,

The red line indicates the long-term linear trend.
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Global temperatures in July vs. 1951-1980 average. Via NASA,
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CO2 Emissions (from Economist)

Daily chart: Washing away coal, blowing away carbon

Obama's clean energy plan

Aug 3rd 2015, 15:48 BY THE DATA TEAM (&) Timekeeper  [FEEma{121] |9 Tweet| &1
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Next animation prepared
by
Tim Scheitin (CISL)
which shows the
difference in total water
vapor between present
and end of this century.






Tyndall started all this in 1861

John Tyndall (British)
showed that triatomic
molecules like CO, and
H,O absorbed and
emitted infrared
radiation in the
Earth's temperature
range.




The End

Special thanks to the
Department of Energy, Office of Science (BER),
the National Science Foundation (NSF), and OSTP
The computer time all these studies and model simulations
came from NSF and DOE supercomputer systems.



viauna Loa, Hawall

(MLO)




Leading Mode of Global SST Variability

Seasonal Capability (Neale, NCAR)
Observations CCSM4
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Climate and Earth System models have and continue to
contribute to understanding and pré@@ieting the climat
system. They allow the science commthity to determin |
objectively the possible impacts of climate change on
food production, flooding, drought, sea level rise, and
health as well as decision support. Higher resolution and
more complete models will help.

From Istockphoto.com
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Genesis of U.S. Global Change Program

White House Cabinet meeting on climate change in 1990

President George H. W. Bush

John Sununu, Chief of Staff

We installed a climate model in The White House!

Allan Bromley, President’s
Science Advisor

Convinced the cabinet about climate change.
We have loss the bipartisan approach.



U.S. Global Change Research Program

$2.7 Billon over 12 agencies

Thomas R. Armstrong, PhD
Executive Director, USGCRP
Office of Science and Technology Policy
Executive Office of the President
Washington, DC

www.globalchange.gov

I chaired the Review Committee for the National Academies

Slides provided by Thomas Armstrong



Global Change Research Act

Global Change Research Act of 1190 (P.L. 101-606)
Act at Attp.//www.globalchange.gov/about/program-structure/global-change-research-act

Called for a "comprehensive and integrated United States research
program which will assist the Nation and the world to understand,
assess, predict, and respond to human-induced and natural
processes of global change”

OMB/OSTP FY 14 S&T Memo:
Guidance to the Agencies

Memo at Attp:.//www.whitehouse.gov/sites/default/files/omb/memoranda/2012/m-12-15.pdf

"Emphasize research that advances understanding of vulnerabilities
in human and natural systems and their relationships to climate
extremes, thresholds, and tipping points”

Passed by bipartisan Congress



National Climate Assessment
released on May 6, 2014

at the White House



Role of the Bering Strait on the hysteresis of the ocean conveyor belt

circulation and glacial climate stability

Objective
Study the influence of the Bering
Strait opening/closure on the hysteresis
of the Atlantic meridional overturning
circulation (AMOC) and abrupt climate
change

AMOC

Approach
CCSM3 is used as the primary tool.

Two simulations have done under present-
day climate boundary conditions with
everything is identical except one with an
open Bering Strait and the other has a
closed one.

Freshwater is slowly added into the
North Atlantic until the AMOC collapses,
then freshwater water is slowly reduced
until the AMOC restarts again. The
simulations run 4400 years each at
NERSC.
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Impact

Our results suggest that AMOC
hysteresis only exists when Bering
Strait is closed. Thus abrupt climate
changes occur only in glacial fime.

This could have broad impact on both
past and future climate studies.
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Hu, A, G. A. Meehl, W. Han, A. Timmermann, B. Otto-Bliesner, Z. Liu, W. M. Washington, W. Large, A. Abe-Ouchi, M. Kimoto, K. Lambeck and B. Wu,
2012, Role of the Berig Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability, PNAS,

doi:10.1073/pnas.1116014109. (Highlighted by PNAS and receivedsignificant

media attention)



The Pacific-Atlantic Seesaw and The Ber'mg Stral'r

Objective £ nE g
Study the influence of the Bering Strait == o= T o
opening/closure on the Pacific-Atlantic =~ =p———"gs e Tlo
climate response to a collapse of the ;wé g :
Atlantic meridional overturning g
circulation (AMOC) Lo -
oo
Approach 1 ~§1 !
CCSM3 is used as the primary tool. o o) 55 £
Two simulations have done under present- = = ELELE TR TR e T E

day climate boundary conditions with I
everything is identical except one with an mpact
open Bering Strait and the other hasa  * Our results suggest that a seesaw-like

closed one. climate change due fo an AMOC

Freshwater is slowly added into the collapse can only occur with a closed

North Atlantic until the AMOC collapses, Bering Strait.

then freshwater water is slowly reduced | : :

until the AMOC restarts again. This could have br'.oad 'mpad. on both
past and future climate studies.

Hu, A, G. A. Meehl, W. Han, A. Abe-Ouchi, C. Morrill, Y. Okazaki, and M.O. Chikamoto, 2012, The Pacific-Atlantic seesaw and the Bering Strait,
Geophys. Res. Lett., L03702,doi:10.1029/20116L050567. (Chosen to be AGU Research Spotlight)



USGCRP Research Enterprise

Create new Translate, provide and assess
knowledge knowledge for societal use

*Advance
Science of

Inform
Decisions

(including GCIS and
Adaptation)

Earth and
Human
System:

IER|EIER ST Science and
Stakeholder
Communities
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USGCRP in the Federal Context

Principals: Attp.//globalchange.gov/about/program-structure/officials

National Science
and Technology
Council (NTSC)

Committee on Environment,
Natural Resources and
Sustainability (CENRS)

Subcommittee on

Global Change Research (SGCR)

U.S. Global Change
Research Program (USGCRP)

CENRS Sub-Committees, Wé6s,

& Task Forces
Air Quality Research (AQRS)

Critical and Strategic Mineral Supply Chains
(CSMSC)

Interagency Arctic Research Policy
Committee Interagency Working Group
(TARPC)

Integration of Science and Technology for
Sustainability Task Force

National Earth Observations Task Force
(NEO)

Disaster Reduction (SDR)
Ecological Services (SES)
Global Change Research (SGCR)
Ocean Science & Technology (SOST)
Water Availability & Quality (SWAQ)
Toxics & Risks (T&R)

US Group on Earth Observations (USGEO)




Research Goals
U.S. Global Change Research Program

* Goal 1. Advance science: Earth system understanding,
science of adaptation and mitigation, observations, modeling,
sharing information

- Goal 2. Inform decisions: Scientific basis to inform,

adaptation and mitigation decisions

* Goal 3. Conduct sustained assessments: build capacity that
improves Nation's ability to understand, anticipate, and
respond

- Goal 4. Communicate and educate: Advance communication

and educate the public, improve the understanding of global
change, develop future scientific workforce



The USGCRP Strategic Plan

Outcomes and Priorities Activities

Outcomes

Providing Knowledge on Scales Appropriate for Decision
Making

Incorporating Social and Biological Sciences

Enabling Responses to Global Change via I'terative Risk
Management

Priorities Activities

Enhance Information Management and Sharing

Enable new capabilities for Integrated Observations and
Modeling

Increase Proactive Engagement and Partnerships
Leverage International Investments & Leadership
Develop the Scientific Workforce for the Future




The Obama Administration committed in 2009 to reduce U.S. greennuuse gas emissions 17
percent below 2005 levels by 2020. While the Administration is not currently on track to meet
this goal, it can pursue a suite of policies even without new legislation. If pursued with
“go-getter” level ambition, those policies can achieve the 17 percent commitment. Below
we look at four possible emissions scenarios. Click through each scenario to learn more. (Sfates
can also play a role in achieving the 17 percent target, but these actions are not incorporated info
this infographic.)
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Business-as-lsua

e ——
/\/V\ S Lackluster

o0 8% reduction 0%

R0 \H‘

a0

Millicn Metric Tons of GO g

EMISSIONS REDUCTION
TARGET MET BY 2020
. ON THE GO-GETTER
4000 PATHWAY
EMISSIONS REDUCTION
TARGET BY 2050

KL

2008 2012 2016 202 2024 2028 2032 2035

Source: Can the U.S. Get There from Here? Using Existing Federal | aws and State Action to Reduce Greenhouse Gas
Emissions

WORLD RESOURCES INSTITUTE



