Building a High-Performance Earth System Model in Julia

Maciej Waruszewskit, Lucas Wilcox®, Jeremy Kozdon!, Frank Giraldo?,
Tapio Schneider?

1 Department of Applied Mathematics
Naval Postgraduate School

2California Institute of Technology

MultiCore 9, NCAR, September 26 2019



The CliIMA Project

m collaboration between Caltech, MIT, NPS,
and JPL to build a new climate model Observations

m model will learn from observational data
and targetted high-resolution simulations

m NPS responsible for the DG-based
dynamical core

m development from scratch in Julia

m open-source under a permissive license
(Apache 2.0)

Land

System |
. . ) Model
https://github.com/climate-machine _d

Clouds

Targeted High-Resolution Simulations


https://github.com/climate-machine

Example Julia code
(CLIMA GMRES loop)

for outer j = 1:M

dynamic high-level language designed for
technical computing (MIT, 2009)

aims to solve the two-language problem # Arnoldi using Modified Gram Schmidt -
linearoperator! (krylov_basis[j + 1], krylov_basis[j]1)
for i = 1:]

based on LLVM H[i, j] = dot(krylov_basis[j + 1], krylov_basis[il)

most of Julia is written in Julia krylov_basis(j + 1] .-= H[i, j] .* krylov_basis[i]
end

H[j + 1, j] = norm(krylov_basis[j + 11)

can be used interactively via REPL Krylov_vanis () o 1 - BD} o 1, 7]

has a package manager

apply the previous Givens rotations

© # #

achieves high performance by JIT compilation e S ke, 1o
and aggressive specialization )
# compute a new Givens rotation to zero out H[j + 1, j]
m has powerful metaprogramming and reflection G - = givens(i, 3, 3+ 1. J)
capabilities # apply the new rotation to H and the rhs
ZO, GG**HEO

# compose the new rotation with the others

Q = 1mul! (G, )
residual_norm = abs(gO[j + 11)

if residual_norm < threshold
converged = true
break
end
end



Julia: example of specialization

Julia

julia> f(x, y) = x * y

f (generic function with 1 method)
julia> x = 1; # Int64

julia> y = 1; # Int64

julia> @code_native f(x, y)

Assembly

5

>

[ © REPL[1]:1 within “f'
| @ REPL[1]:1 within '

|L

imulq

movq
retq
nopl

Yrsi, Y%rdi
Y%rdi, Yrax

(%rax,’%rax)



Julia: example of specialization

Julia Assembly

julia> f(x, y) = x * y 5 r @ REPL[1]:1 within “f'

f (generic function with 1 method) ; |r @ REPL[1]:1 within '

julia> x = 1.0; # Float64 vmulsd %xmmi, %xmmO, %xmmO
julia> y = 1.0; # Float64 ; |L

julia> @code_native f(x, y) retq

nopw %hes: (hrax,hrax)



Julia: example of specialization

Julia Assembly

@ REPL[1]:1 within “f'
@ promotion.jl:314 within ~*'

julia> f(x, y) = x * y ST
f (generic function with 1 method) |r
julia> x = 1.0; # Float64 ; || @ promotion.jl:284 within “promote'’
julia> y = 1 ; # Int64 ||

r
|r Q@ promotion.jl:261 within ~_promot
julia> @code_native f(x, y) ||

r © number.jl:7 within "convert'
| @ REPL[1]:1 within ~Type'
vevtsi2sdq  %rdi, %xmml, %xmml

|LLLLL
5 |t @ float.j1:399 within ~*'
vmulsd %xmmO, %xmml, %xmmO
. |L
retq
nopw (%rax,rax)



Julia: example of specialization

Julia Assembly

; r @ REPL[1]:1

julia> f(x, y) = x * y

within ~_mul'

| @ matrix_multipl
julia> using StaticArrays ; H‘r y-jl:
o _ . ; rem _multiply.j1:58 within “macro expansion'
julia> x = @SMatrix rand(4, 4) ||| @ REPLL1T:1 within “x'
julia> y = @SVector rand(4) vbroadcastsd (%rdx), %ymmO0
T ; vmulpd (Yrsi), %ymmO, Y%ymmO
julia> @code_native f(x, y) vbroadcastsd 8(%rdx), %ymml
vmulpd 32(%rsi), %ymmi, Y%ymmi
. ‘ ‘ ‘ LL
5 ||| r @ float.j1:395 within “macro expansion'
vaddpd Yymml, %ymmO, %ymmO
e
5 ||| @ matrix_multiply.j1:58 within “macro expansion'
|1]]r @ float.j1:399 within ~#'
vbroadcastsd 16(%rdx), %ymml
vmulpd 64(%rsi), %ymmi, Y%ymmi
[1]1"
5 ||| r @ float.j1:395 within ~+'
vaddpd Yymm1, %ymm0, Y%ymmO
. L
; HHF @ float.j1:399 within “*'
vbroadcastsd 24 (%rdx), %ymml
vmulpd 96 (%rsi), Y%ymml, %ymmi
S
5 ||| r @ float.j1:395 within ~+'
vaddpd Yynml, %ymmO, %ymmo
;o |LLLL
vmovupd Yiymm0, (Yrdi)
movq Yrdi, Yrax
vzeroupper
retq
nopw %es: (hrax, %rax)



Julia benefits for CliIMA

In addition to being performant Julia

m is a good common language for domain experts from the Earth sciences and
uncertainty quantification/machine-learning communities

m enables rapid development and refactoring
m makes coupling independently developed components easy

We also get special support from the MIT Julia Lab.



A new climate model needs to fully embrace accelerators

Modern supercomputers are increasingly becoming accelerator-based with hardware
evolving at a rapid pace

26010

HGJ 1EDC

osemsITING

Julia support for programming accelerators is another of its strong points.



Julia GPU ecosystem

Pioneering work by Tim Besard (@maleadt, Julia Computing)

Low level - CUDAnative

m "write CUDA in Julia"

m Julia GPU compiler implemented as a library with maximal reuse of the Julia
compiler infrastructure (~ 4.5K lines of code, backend provided by LLVM)

m the same approach already inspired efforts for AMD GPUs and Google TPUs

High level - CuArrays

m provides arrays that live in the GPU memory and data transfer primitives

m can program both CPUs and GPUs using element wise operations and
(map)reduce functions



re on CUDAnative

Example CUDAnNative code

m leverages Julia ability to generate
9 ylog (matrix transpose using shared memory)

static code
const TDIM = 32
m accepts mostly undocumented subset const BLOCK_ROWS = 8
of Julia in kernels ("if it works it works") function cudanative_transpose! (a_transposed, a)
. . T = eltype(a)
m integrates well with CUDA tools tile - OcuStaticSharediien T (TDIM + 1, TDIM)
(nvprof, nvvp, etc.) by = blockldx() .y
m performance for simple code is often px = blockldx0)
as good as CUDA compiled with clang ty - threadldz().y
tx = threadIdx().x
m performance for more abstract code
. i (bx - 1) * TDIM + tx
can be hard to predict j = (by - 1) = TDIM + ty
m debugging is tricky for k = 0:BLOCK_ROWS:TDIM-1
@inbounds tilelty + k, tx] = ali, j + k]
end

sync_threads ()

i= (by - 1) * TDIM + tx
j = (bx - 1) = TDIM + ty

for k = 0:BLOCK_ROWS:TDIM-1
@inbounds a_transposed[i, j + k] = tile[tx, ty + k]
end

nothing
end



CLIMA abstraction for platform portability - GPUifyLoops

GPUifyLoops transpose CUDAnative transpose
function gpuifyloops_transpose! (a_transposed, a) function cudanative_transpose!(a_transposed, a)
T = eltype(a) T = eltype(a)
tile = Oshmem T (TDIM + 1, TDIM) tile = GcuStaticSharediem T (TDIM + 1, TDIM)
@loop for by in (1:size(input, 2) + TDIM; blockIdx().y) by = blockIdx().y
@loop for bx in (1:size(input, 1) + TDIM; blockIdx().x) bx = blockIdx().x
@loop for ty in (1:BLOCK_ROWS; threadIdx().y) ty = threadldx().y
@loop for tx in (1:TDIM; threadIdx().x) tx = threadIdx().x
i= (bx - 1) * TDIM + tx i= (bx - 1) * TDIM + tx
j = (by - 1) * TDIM + ty j = (by - 1) = TDIM + ty
for k = 0:BLOCK_ROWS:TDIM-1 for k = 0:BLOCK_ROWS:TDIM-1
@inbounds tilelty + k, tx] = ali, j + k] @inbounds tilelty + k, tx] = ali, j + k
end end
end # tx
end # ty
Osynchronize sync_threads ()

@loop for ty in (1:BLOCK_ROWS; threadIdx().y)
@loop for tx in (1:TDIM; threadIdx().x)

i= (by - 1) * TDIM + tx i = (by - 1) * TDIM + tx
j = (bx - 1) * TDIM + ty j = (bx - 1) * TDIM + ty
for k = 0:BLOCK_ROWS:TDIM-1 for k = 0:BLOCK_ROWS:TDIM-1
@inbounds a_transposed[i, j + k] = tile[tx, ty + k] ©inbounds a_transposed[i, j + k] = tile[tx, ty + k]
end end
end # tx nothing
end # ty end
end # bx
end # by



CLIMA abstraction for platform portability - GPUifyLoops

m developed by Valentin Churavy (@vchuravy, MIT) motivated by CLIMA needs
m inspired by OCCA

m handles lowering of math functions to CUDA intrinsics on the GPU (e.g. translates
sin to CUDAnative.sin)

m provides a loop unrolling macro
m performs additional optimization passes on the GPU (inlining, FMA generation)
m helps with GPU debugging since you can try running on the CPU first



CLIMA abstraction for platform portability - GPUifyLoops

m developed by Valentin Churavy (@vchuravy, MIT) motivated by CLIMA needs
m inspired by OCCA

m handles lowering of math functions to CUDA intrinsics on the GPU (e.g. translates
sin to CUDAnative.sin)

m provides a loop unrolling macro

m performs additional optimization passes on the GPU (inlining, FMA generation)
m helps with GPU debugging since you can try running on the CPU first

m does all of this in less than 500 lines of code !



Example of abstractions inside kernels - balance laws

CLIMA assumes equations of the form
o)
H+V-F=8

which can be specified inside kernels using vector notation. For example, the shallow
water equations can be written in code as

@inline function flux!(m::SWModel, @inline function source! (m::SWModel,
F::Grad, S::Vars,
q::Vars, q::Vars,
o::Vars, o::Vars,
t::Real) t::Real)

U=q.U T =T
n=a.m f=o.f
H = m.problem.H U=q.U
SU+=1-f xU
Fn+=10
F.U += grav * H * n * I linear_drag! (m.turbulence, S, q, «, t)

FU+=1/Hx*U=x*TU'
return nothing
return nothing end
end



CLIMA approach to distributed computing

Julia wrapper for MPI - MPI. j1

m started by Lucas Wilcox (@lcw, NPS) in 2012, under active development with
many contributors since

m recently gained support for CUDA-aware MPI

Distributed arrays abstraction - CLIMA.MPIStateArrays

m an array with support for MPI holding extra ghost elements

m has methods for communicating neighbours etc.

m backed by either a CPU-resident Array or a GPU-resident CuArray
m supports distributed broadcasting and global reductions



CLIMA performance on CPUs: single CPU run time

Direct run time comparison to NUMA — another DG code from NPS written in Fortran.
Single core run with 103 elements and polynomial order 4 (rising thermal bubble test).

Kernel CLIMA NUMA
Volume 601.3s 773 s
Face 2975s 310.5s
LSRK 13.4s 120.8 s
Total 912.8s 1289.5s




CLIMA performance on CPUs: strong scaling (1)

Scaling comparison to NUMA

16 || CLIMA
147[]NUMA
12 +

= 10|

]

p)]
6,
4,
2,

|
6 8 10 1
Numer of cores

|
2 14 1

6




CLIMA performance on CPUs: strong scaling (2)

Scaling comparison to NUMA

Speedup

32
28
24
20
16
12

e CLIMA

0 NUMA

| | | | | |
12 16 20 24 28 32
Numer of cores




CLIMA performance on GPUs: roofline

Performance [GFLOPs/s]

8,000 |

6,000

4,000 |

2,000

Tesla V100

1 2 3 4 5 6 7 8 91
Arithmetic Intensity [FLOPs/Byte]

|
0




Conclusions and outlook

Conclusions

m Julia delivers on its promises, enabling high-performance while keeping
productivity and abstraction level high

m macros and other code transformation tools enable platform independent
programming in Julia using custom kernels

m CLIMA is faster than NUMA on the CPU and our kernels get fairly close to
machine limits on the GPU

Outlook and future work

m performance ClI
m more GPUifyLoops backends
m benchmarks using multiple GPUs and multiple nodes



CLiMA is funded by private and public funders

ERIC AND WENDY SCHMIDT

SCHMIDT FUTURES EART
/‘_—-—_—_—-N\,

CHARLES TRIMBLE

RONALD AND MAXINE LINDE
CLIMATE CHALLENGE

PAUL G. ALLEN
& FAMILY FOUNDATION

) Google Cloud



