Algorithmic Choices that Improve Hardware
Utilization and Accuracy

Matthew Norman
Oak Ridge Leadership Computing Facility
https://mrnorman.github.io

https://mrnorman.github.io/

The Challenge of Accelerated Computing

 Must reduce power consumption
e Less cache

* Slower memory clock
* Wider memory bus
e Compute power >> Bandwidth

 Nvidia V100 GPU
* Capable of 15 teraflop/s (single precision)
 (Can only feed in 225 billion single floats per second
* Most FP operations require two floats per operation
 Bandwidth is 134x too slow

The Challenge of Accelerated Computing

 The Cray-1 Vector Machine (1975) =8
e 160 megaflop/s s

* 20 million single floats per second
 Bandwidth only 16x too slow

 We’'ve been here before, but not this extremely

What Do We Need From Algorithms?

* We need more computations per data fetch (Compute Intensity)
 GPUs have a small amount of fast on-chip cache
 Load a small amount of data from main memory
 Perform many computations within cache before writing back to memory

* We need less algorithmic dependence

* Each global synchronization kicks your data out of cache
 Each global loop through the data has a roughly fixed cost
* You pay for out-of-cache data accesses, not computations

il ©° We need less data movement over network

 Network fabric is very slow compared to on-node memory
 Want as few transfers as possible and as small as possible

The Euler Equations

* Euler equations govern atmospheric dynamics
* Conservation of mass, momentum, & energy with gravity source term
* Hyperbolic system of conservation laws
 Waves travel at the speed of wind and the speed of sound

pU puU pw
puz +p ; pUU f pUU

pUv =~ pv? +p { pWU
puw prw pw’ +p —pu
pub pvl pwb

The Euler Equations

Upwind Finite-Volume Spatial Discretization

* Finite-Volume Algorithm
* Solution is a set of non-overlapping cell averages
* Cell average updates based on cell-edge fluxes
 Use upwind Riemann solver to determine fluxes
* Reconstruct intra-cell variation from surrounding “stenci

=

|II

of cells

 Advantages
! Conserves variables to machine precision
Large time step (CFL=1)
Treats each Degree Of Freedom individually (accuracy)
Stable for non-shock Euler eqns without added dissipation

Weighted Essentially Non-Oscillatory Limiting (WENO)

e WENO Algorithm

e Compute multiple polynomials using multiple stencils

 Weight the most oscillatory polynomials the lowest

e Custom low-dissipation implementation (Norman & Nair, 2019, JAMES)
phigh—order(x)

p1(x)

- P2 (x)
* Advantages p3(x)
 Requires no additional data when used with Finite-Volume
* Very accurate and effective at limiting oscillations

Arbitrary DERivatives (ADER) Time Discretization

 ADER Algorithm

 PDE itself translates spatial variation into temporal variation
o 0
s

Differentiation gives higher-order time derivatives

do 0y 0°q 0°q iFal N F

at ox 0tz dxZ _ ot3 oxd

 Use Differential Transforms for greater efficiency for non-linear PDEs
 Advantages

Requires no additional data for high-order time integration
Automatically propagates WENO limiting through time dimension
Allows larger time step than existing explicit ODE time integrators
e Courant number of 1 for FV

More accurate than existing ODE time integrators

Algorithm Summary

e Reconstruct variation from stencil

 Apply WENO limiting

* Compute high-order ADER time-average

Compute upwind fluxes

Update the cell average from fluxes

Nearly all computations use only a small stencil of data
Significant compute intensity

Accuracy

3rd_-Order 9th_Order

*_-'.W

= =y
2{\ =
6 @ é{&m
AN ANTTZ

0.0]
1

(o)
I

I~
1

£
=L
S
c
0
]
]
9]
o
-
N

Z Location (km)

20.9 seconds 30.3 seconds

[\
I

5i0 7j5 16.0 12;.5 15I.0 l. . 5.0 7.5 10.0 12.5 15.0
X Location (km) x Location (km)

-99 =72 -46 -19 0.7 3.4 6.0 8.7 11.3 14.0 -99 -72 -46 -1.9 0.7 3.4 6.0 8.7 11.3 14.0

* 9th_order has 6x more computations than 3™-order (hardware counters)
 But it only costs 45% more on GPUs

a
_
=
+—
[
| .
Q
o
-
)
—
©
]
c
)]
=
@]
o

Z location (km)

KE spectra
e 2-D simulation

[

o
ek
=

=
o
=]

NoLim: 26.2 sec
WENO: 30.3 sec

=

o
~
1

WENO has 16x more
computations than no
il limiting (HW counters)

=
o
u

>
e
w
c
)
)
| -
]
=
o
('
‘©
| -
)
()
Q
o
(Vp]
>
(@]
| .
(]
c
L
=
]
Q
=
hVd

=
o
w

But it’s only 15% more
expensive on GPUs

Wavenumber

Performance (Most Expensive GPU Kernel)

Nvidia V100 GPU
 80% peak flop/s
e 11.9 trillion flop/s

AMD MI60 GPU
* 40% peak flop/s
e 5.9 trillion flop/s

T Y
-
£2c
N
1T N
£l |
=1 |
T
T
ml |
.|
H
.|
Lol
1L
L

e 5
3§ 1 i -
--amllll

. B
e 1

C++ Performance Portability Approach

* Kernels specified as C++ Lambdas describing the work of one thread

 Simply CUDA with different syntax
* Burden of exposing parallelism is on the developer
* Once exposed, parallelism is very portable across architectures

* Use multi-dimensional array classes for data

* Object-bound dimension sizes = robust bounds checking
* “Shallow copy” for easy GPU portability (allows Lambda capture-by-value)

 Launchers run the kernel with multiple backend options

C++ Performance Portability Approach

inline void applyTendencies(realArr &state2, real const c@, realArr const &stateo,

real const cl, realArr const &statel,
real const ct, realArr const &tend,

Domain const &dom) {
for (int 1=0; l<numState; 1l++) {

for (int k=0; k<dom.nz; k++) {
for (int j=0; j<dom.ny; j++) {

for (int i=@; i<dom.nx; i++) {
state2(1,hs+k,hs+j,hs+i) = c@ * state@(l,hs+k,hs+j,hs+i) +
cl * statel(1l,hs+k,hs+j,hs+i) +
ct * dom.dt * tend(1,k,j,1i);

C++ Performance Portability Approach

inline void applyTendencies(realArr &state2, real const c@, realArr const &stateo,

real const cl, realArr const &statel,
real const ct, realArr const &tend,

Parallelism Domain const &dom) {
for (int 1=0; l<numState; 1++) {
for (int k=0; k<dom.nz; k++) {
for (int j=@; j<dom.ny; j++) {

for (int i=@; i<dom.nx; i++) {

state2(1,hs+k,hs+j,hs+i) = c@ * state@(l,hs+k,hs+j,hs+i) +
cl * statel(1l,hs+k,hs+j,hs+i) +
ct * dom.dt * tend(1,k,j,1i);

Kernel

C++ Performance Portability Approach

inline void applyTendencies(realArr &state2, real const c@, realArr const &stateo,
real const cl, realArr const &statel,
real const ct, realArr const &tend,
Domain const &dom) {
// for (int 1=0; l<numState; 1l++) {
// for (int k=0; k<dom.nz; k++) {
// for (int j=0; j<dom.ny; j++) {

// for (int 1=0; i<dom.nx; i++) {
yakl::parallel for(numState*dom.nz*dom.ny*dom.nx , YAKL LAMBDA (int iGlob) {
int 1, k, j, 1;
unpackIndices(iGlob,numState,dom.nz,dom.ny,dom.nx,1,k,j,1);
state2(1,hs+k,hs+j,hs+i) = c@ * stated(l,hs+k,hs+j,hs+i) +
cl * statel(1l,hs+k,hs+j,hs+i) +
ct * dom.dt * tend(1l,k,j,1i);

1)

C++ Performance Portability Approach

inline void applyTendencies(realArr &state2, real const c@, realArr const &stateo,
real const cl, realArr const &statel,
real const ct, realArr const &tend,
Domain const &dom) {
// for (int 1=0; l<numState; 1l++) {
// for (int k=0; k<dom.nz; k++) {
// for (int j=0; j<dom.ny; j++) {

// for (int i=@; i<dom.nx; i++) { Parallelism
yakl::parallel for(|numState*dom.nz*dom.ny*dom.nx|, YAKL LAMBDA (int iGlob) {

int 1, k, j, 1;

unpackIndices(iGlob,numState,dom.nz,dom.ny,dom.nx,1,k,j,1);

state2(1,hs+k,hs+j,hs+i) = c@ * stated(l,hs+k,hs+j,hs+i) +
cl * statel(1l,hs+k,hs+j,hs+i) +
ct * dom.dt * tend(1l,k,j,1i);

b Kernel

C++ Performance Portability Approach

e CPU Backend

template <class F> void parallel for(int const nlIter , F &F) {
for (int i=0; i<nIter; i++) {
f(1);
}
}

C++ Performance Portability Approach

e Nvidia CUDA Backend

template <class F> _ global void cudaKernel(int nThreads, F) {
int 1 = blockIdx.x*blockDim.x + threadIdx.x;
if (i < nThreads) { f(i); }
}
int const vectorSize = 128;
template <class F> void parallel for(int nThreads, F &f) {
cudaKernel <<< (nIter-1)/vectorSize+l , vectorSize >>> (nThreads , f);

}

C++ Performance Portability Approach

* AMD HIP Backend

template <class F> _ global void hipKernel(int nThreads, F f) {
int 1 = hipBlockIdx x*hipBlockDim x + hipThreadIdx x;
if (i < nThreads) { f(i); }

}

int const vectorSize = 128;

template<class F> void parallel for(int const nThreads, F const &f) {
hipLaunchKernelGGL(hipKernel , dim3((nIter-1)/vectorSize+l) , dim3(vectorSize),

(std::uint32 t) © , (hipStream_t) @ , nThreads , f);

AMD GPU Status

Cloud dycore running efficiently on AMD MI60 GPUs using YAKL
e github.com/mrnorman/awflCloud

* github.com/mrnorman/YAKL (“Yet Another Kernel Launcher”)

* Eventual transition to Kokkos kernel launchers (“parallel for”)

miniWeather Fortran code running on AMD GPUs with OpenMP 4.5

* Using the Mentor Graphics gfortran compiler development
* github.com/mrnorman/miniWeather

SCREAM physics will use C++ & Kokkos
 Kokkos HIP backend coming soon

Sending kernels to AMD / Mentor Graphics to improve maturity

e UKMO Psyclone generated Fortran kernels
e RRTMGP OpenMP 4.5 port (coming soon)

https://github.com/mrnorman/awflCloud
https://github.com/mrnorman/YAKL
https://github.com/mrnorman/miniWeather

Future Work: Handling Stiff Acoustics

Vertical acoustic stiffness

* 100:1 aspect ratio for horiz / vertical grid spacing at surface

* Sound waves is 370 m/s, but wind at surface is order 1 m/s
Approach 1: First-order upwind acoustics

 Need accurate, large time step IMplicit-EXplicit (IMEX) Runge-Kutta

>4 tridiagonal solves per time step

Approach 2: Infinite sound speed; Poisson pressure solve
 Only 1 tridiagonal solve per time step for pressure

* Diagnostic density advected with the other variables
Approach 3: High-order coupled implicit vertical
 Potentially better on GPU, but much more time consuming
 Requires many loop iterations through data

 Download this presentation
* tinyurl.com/norman-mcl9

https://tinyurl.com/norman-mc19

