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Introduction

WRF MPAS
• Lat-Lon global grid
– Anisotropic grid cells
– Polar filtering required
– Poor scaling on massively

parallel computers

• Unstructured Voronoi
(hexagonal) grid

– Good scaling on massively
parallel computers

– No pole problems

Park et al. (2015, KMS)

• Grid refinement through
domain nesting

– Flow distortions at nest
boundaries

• Smooth grid refinement
on a conformal mesh

– Increased accuracy and
flexibility in varying 
resolution

• Pressure-based terrain-
following sigma vertical
coordinate

※ A hybrid sigma-pressure
vertical coordinate is added
in WRFV3.9

• Height-based hybrid
smoothed terrain-following
vertical coordinate

– Improved numerical 
accuracy

§ KISTI has been collaborating on a development of MPAS with NCAR MMM 
since 2014
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Introduction

§ MPAS-TC (K-MPAS) which is suitable for typhoon forecast over the western Pacific has 
been developed through improving physics schemes and constructing appropriate 
variable resolution meshes.

15-60 km

§ For the next steps, KISTI is making efforts to improve
the integration speed and the accuracy of K-MPAS

• Development of CPU-GPU heterogeneous code
• Development of ensemble-based data assimilation system

MPAS(v5.2) K-MPAS(v5.1)

Convection Tiedtke scheme
(Tiedtke, 1989; Zhang et al., 2011)

Tiedtke scheme
- Optimization for the simulation of TCs

Surface flux Monin-Obukhov
(Fairall et al., 2003)

Monin-Obukhov
- Improvement of surface flux (Davis, 2008)
- False alarm in which strong typhoons
were frequently occurred were reduced

1D ocean mixed-layer X O

GPU acceleration X O
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CPU and Accelerator

§ In the past, it was common to use CPU-based cluster system

§ Recently, CPU and accelerator can be used together to 
improve the computing performance
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GPU Accelerator

• Multi core CPU

• Few very complex core

• Single thread performance optimization

• Many core GPU

• Thousands of simpler cores

• Thousands of concurrent hardware threads

CPU GPU
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From http://www.electronicspecifier.com/communications/vivante-es-design-magazine-gpus-the-next-must-have
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How to use GPU for General Purpose 

CUDA OpenCL OpenACC
-Fortran, C, C++, Python -C, C++ -Fortran, C, C++

• “More Science, Less Programming”
• OpenACC is a directive-based programming model
• Easy, Simple, Powerful

!$acc data create(n0sfac) &
!$acc pcopy(qrs,rslope,rslopeb,rslope2,rslope3,vt,den,denfac,t)
!$acc kernels

do i = its, ite
do k = kts, kte
supcol = t0c-t(i,k)
n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.)

. . . . . . . . . . . . 

vt(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k)
enddo

enddo
!$acc end kernels
!$acc end data

!$acc data create(n0sfac) &
!$acc pcopy(qrs,rslope,rslopeb,rslope2,rslope3,vt,den,denfac,t)
!$acc kernels

do i = its, ite
do k = kts, kte
supcol = t0c-t(i,k)
n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.)

. . . . . . . . . . . . 

vt(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k)
enddo

enddo
!$acc end kernels
!$acc end data

ex) Microphysics scheme in MPAS (i.e., WSM6)
with OpenACC directives
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Development of CPU-GPU heterogeneous code

§ For the development of MPAS hybrid code, we have discussed with NCAR CISL 
since December in 2015.

Dynamics PhysicsDynamics Physics
KISTICISL

CISL
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MPAS Physics Execution Time on CPU

RED : Ported on GPU
BLUE : Plan to port on GPU

Microphysics (WSM6, 9.34%)

Short Wave (RRTMG, 11.94%)

Long Wave (RRTMG, 4.94%)

PBL (YSU, 3.33%)

Convection (New Tiedtke, 6.11%)Physics
(39.04%)

Dynamics
(54.16%)

GWDO (YSU GWDO, 1.51%)

Etc.
(surface layer, cloud fraction,1.87%)

Etc.
(6.8%)• 60km resolution (# of cells: 163842)

• 41 vertical layers
• dt=180s
• 1 day forecast
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GPU Acceleration Performance
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• 2016 Typhoon track forecast (12 cases)

Performance of K-MPAS for TC track forecast

Model Feature
SatSST SST is updated by using satellite observation
1D Ocean 1D ocean model is coupled to WRF
DynamicINIT Dynamic initialization of TC is applied

SatSST
1D Ocean
DynamicINIT

Di
st

an
ce

 E
rr

or
 (k

m
)

Forecast time (hr)

WRF-based TC forecast models of KISTI K-MPAS
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• 2016 Typhoon track forecast (12 cases)

Performance of K-MPAS for TC track forecast
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• K-MPAS shows a good performance for the TC track forecast
• Data assimilation has not been applied to the MPAS yet.
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Data assimilation

• A statistical combination of observations and short-range forecasts
– “Using all the available information, to determine as accurately as possible the 

state of the atmospheric (or oceanic) flow” - Talagrand (1997)

©Vaisala

GOSAT

Phase array radar

http://pedagotech.inp-toulouse.fr

Observation Model

• We usually utilize two independent information of observation and model 
forecast to obtain the best estimate of the true state of the nature.
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Sources of information – Observations 

https://www.wmo.int/pages/prog/www/OSY/Gos-components.html

surface Upper-air

§ Ground-based measurements

§ Remote sensing data from the satellites

• Observations provide information with instrumental errors
• The information is limited in time and space
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Sources of information – Numerical models

§ Partial differential equations of physical laws w.r.t. time
•  = ()

• x: a state of variables 
(e.g. wind, temperature, humidity, etc.)

• n: time index
• M: nonlinear numerical model

• Discretization of the equations for the model grids
èLimited accuracy of the model M (e.g. sub-grid 

phenomena)
èerrors of initial data () can grow quickly due to 

chaotic nature of the atmosphere (even when the 
model is perfect!)
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Ensemble-based data assimilation system

• Success of data assimilation strongly depends on how accurate we can estimate 
errors of the information. 

• Model error is much more complicated and difficult to estimate than 
observation error because it highly depends on atmospheric instability, 
observation density, etc.

• Especially for the extreme weather, it is essential to estimate real-time 
forecast error as accurate as possible

è In such cases, ensemble data assimilation (EnKF) is certainly advantageous to 
a variational DA (VAR) because EnKF considers “errors of the day” while VAR 
uses static forecast error estimates.
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EnKF data assimilation

Ensemble 
analysis

Ensemble 
forecast 

Observations

Ensemble 
analysis

Ensemble 
forecast 

Time t-∆t Time t Time t+∆t

We can reflect “errors of the day”
- Uncertainties introduced by the atmospheric 

instabilities can be estimated by the 
ensemble forecast
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Local Ensemble Transform Kalman Filter (Hunt et al. 2007)

• Forecast of numerical model should be transformed to the 
observation space globally.

• Observation operator (spatial interpolation and variable 
transformation)

• For an analysis at one point, LETKF uses only neighborhood 
information within a local region, which is a part of 
“embarrassingly parallel”.

# of model grids : O(106-107)

Model grids Observations

radius of
localization
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Special treatment of LETKF for MPAS

• Defining feature of MPAS

K
“I know many advantages of 
unstructured grid, but it makes 
implementation of LETKF more difficult!”
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4-dimensional LETKF

qAs a density of observations gets finer in time and space, 
DA system needs to reflect the background and the 
observations at the correct time.

• 3D-LETKF

time(hr)
t t+1 t+2 t+3t-3 t-2 t-1t-6

forecast

observations
analysis

forecast

observationsanalysis

t+6

time(hr)
tt-6 t+6



© 2017. Disaster Management HPC Technology Research Center, KISTI

MPAS-LETKF @ KISTI

• Current system can assimilate NCEP prepbufr conventional data.
• Now, we’re working on radiance data assimilation with AMSU-A, 

which requires variable transformation in the observation 
operator (RTTOV v. 11.0). 

MPAS ensemble forecast
(50 members)

NCEP prepbufr data
(conventional data)

Observation operator
(spatial interpolation & variable 

transformation)

LETKF data assimilation
(50 members of ensemble analysis)

Every 6-hr 
cycle
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Scalability test – Model configuration and Test plan

4km
10 km

12 km

3-15 km mesh

Numerics
• Model top ~ 30 km 
• Model levels ~ 56 levels
• Mesh size ~ 6,488,066 cells 
Physics
• Surface Layer : Monin-Obukov
• PBL : YSU
• Land Surface Model : NOAH 4-layers
• Convection : Tiedtke
• Microphysics : WSM6
• Radiation : RRTMG
• Ocean Mixed Layer (modified from WRFV3.6)

§ We integrated the model for 6-hr forecast 
with dt=15sec → 1440 timesteps

# of cores exp1 exp2 exp3
1024
2048
4096
8192

16384
32768 X

CDF5 CDF5NetCDF4 § 17 runs have been conducted.
- 32768-core run for exp3 could not be 

completed due to the short time limit.

§ The runs with CDF5 format show much faster I/O than those with NetCDF4 format. 
Therefore, we planed to run the exp3 with CDF5 format

§ The runs with 16384 & 32768 cores have serious issue related to the I/O bottleneck 
using NetCDF4 format. Thus, we also tried not using PIO lib.

No PIO
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Scalability test – Total time
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As the number of cores increases,
I/O occupies more time of total run-time.
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Summary

Optimization for 
TC forecast over W.P.

vCPU-GPU heterogeneous code
vMPAS-LETKF system

vWhat’s next?
– Coupling with Ocean model (i.e., MOM)
– Modifying or developing physics schemes 

for the severe weather forecast over the 
East Asia
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Thank you


