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Which of these faces is fake?
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Which of these simulations is fake?

R. Gupta, M. Mustafa, K. Kashinath, manuscript to be submitted soon.
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Atmospheric upwind velocity (w500) fields over the pacific
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It is not just pretty pictures (Rayleigh—Bénard convection)

Real Generated Generated

R. Gupta, M. Mustafa, K. Kashinath, manuscript to be submitted soon.
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Generating music

@ ABOUT PROGRESS RESOURCES BLOG

MuseNet

We've created MuseNet, a deep neural network that can generate 4-minute
musical compositions with 10 different instruments, and can combine
styles from country to Mozart to the Beatles. MuseNet was not explicitly
programmed with our understanding of music, but instead discovered
patterns of harmony, rhythm, and style by learning to predict the next
token in hundreds of thousands of MIDI files. MuseNet uses the same
general-purpose unsupervised technology as GPT-2, a large-scale
transformer model trained to predict the next token in a sequence, whether
audio or text.

https://openai.com/blog/musenet/

Samples

o Prompt: First 5 notes of Chopin Op. 10, No. 9

© Fromet: Jazz Piano-Bass-Drums
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https://openai.com/blog/musenet/

Denoising/ Image inpainting

Generative models can be used to denoise or
inpaint missing data.

hi/idia.com/research/inoaintihd/

Original (ground truth) ——»  Masked with missing values —_ 20crAl reconstruction cmipAl reconstruction

Generative models  wen C5%E
used to reconstruct e |
observational gaps =g
in historical "
temperature PC'E; A
measurements.

= S - - =

5 x 5° (remap) Anomalies (61-90) Input for Als Output composition

“Artificial intelligence reconstructs missing climate information” , C. Kadow et al, Nature Geoscience, 13.408-413(2020)
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https://www.nature.com/articles/s41561-020-0582-5
https://www.nvidia.com/research/inpainting/

Domain-to-domain translation

CycleGAN, Zhu et al, arXiv:1703.10593

Summer 7_ Winter

Generative models can be used to “translate” data from
domain-to-another.

Schmidt et al. arXiv:1905.03709

“Visualizing the

Conseque ces 0 Climate e e e \ | L,uu/v\g
Change Using " g e - Pl BB -
Cycle-Consistent " F DT R i

Adversarial Networks”
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http://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1905.03709

Super-resolution

SRGAN, Ledig et al, arXiv:1609.04802
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Original

bi-cubic
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https://arxiv.org/abs/1609.04802

Missing data imputation

Angry Contemptuous Disgusted Fearful Happy  Surprised Sad Neutral
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http://openaccess.thecvf.com/content_CVPR_2019/papers/Lee_CollaGAN_Collaborative_GAN_for_Missing_Image_Data_Imputation_CVPR_2019_paper.pdf

Learning useful representations
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smiling neutral neutral
woman woman

man

man man woman
with glasses without glasses without glasses

woman with glasses
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Supervised Learning

Given observed data 1, T2, ** ,Tp
and labels Y1,Y2,°** ;Yn,learn a
mapping from X — Y, i.e. model the
conditional distribution

P(Y|X = z)

Examples: classification, regression,
object detection, segmentation, etc.
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Supervised Learning

Given observed data 1,22, , Tp,
and labels Y1,Y2,** ,Yn, learn a
mapping from X — Y, i.e. model the
conditional distribution

P(Y|X = z)

Examples: classification, regression,
object detection, segmentation, etc.

22l BERKELEY LAB

Unsupervised Learning

Given observed data X1, T2, ,Tp
learn the underlying structure of the data,
I.e. model the data distribution

P(z)

Examples: dimensionality reduction,
data generation, data imputation, data
completion, etc.

M. Mustafa, AI4ESS 2020 13



Density estimation

An example of density estimation of observed data (red) using Kernel Density
Estimation (dashed black). True distribution is a mixture of two-gaussians (blue).

Creative Commons Attribution-Share Alike 3.0 Unported license
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Deep generative models are density estimators Pmodel(l’)
of high-dimensional data Py, () (e.g. images)

0
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https://en.wikipedia.org/wiki/Density_estimation#/media/File:KernelDensityGaussianAnimated.gif

Explicit density models: Pixel CNN, PixelRNN, WaveNet

Decompose the data and model it auto-regressively. For example, the likelihood of
animage p(x) can be decomposed in terms of the other 1-d distributions:

Figure credit:_ H. Sharma

n?
p(ﬂf) — HP(I’L'xlﬂ s $i—l)
=1

N

likelihood of image X likelihood of the it pixel

Then use maximum-likelihood to maximize the likelihood of training data.
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https://towardsdatascience.com/auto-regressive-generative-models-pixelrnn-pixelcnn-32d192911173

Latent Variable Models
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The manifold hypothesis

Machine-learning is predicated on a
hypothesis about the structure of
real-data, namely:

real-world high-dimensional data lie
on low-dimensional manifolds
embedded within the
high-dimensional space.

We want to discover the complicated
features of this lower-dimensional
manifold, often with the downstream
task in mind.

2D data manifold embedded within 3D space

2" BERKELEY LAB M. Mustafa, AI4ESS 2020 17




Latent variable models

Learn a mapping between a simpler (latent) manifold and the real data-manifold.

latents

2

|
©
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Latent variable models

Learn a mapping between a simpler (latent) manifold and the real data-manifold.

latents !Ei lml il lower-dimensional

@ latent representation

high-dimensional
data
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Variational AutoEncoders
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AutoEncoders

Learn to encode data into a lower-dimensional latent representation by training the
model to reconstruct the data passing through an information bottleneck.

1| Encoder Decoder |7/

Reconstruction loss: £($, :U,) o ||5C — $,||2
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Variational AutoEncoder

Can we impose a prior on the latent representation that allows for inference?

i.e. we want to be able to sample new points from the latent space z ~ p(z)and
sample the model posterior distribution py(z|x)

z~p(z) = U Decoder ||/

po(z|)

22l BERKELEY LAB
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Variational AutoEncoder

To get the full picture of VAEs and the derivation of their loss as an Evidence Lower
Bound on the log-likelihood of data, you need to consider the probabilistic
interpretation. See the original VAE paper (Kingma & Welling, arXiv:1312.6114).

You can also find a full derivation at the excellent “Tutorial: Deriving the Standard
Variational Autoencoder (VAE) Loss Function” by Stephen Odaibo.

In the following slides | will try to use a hacky/hand-wavy argument to conjure up the
loss function. This follows the same line of development of Alexander Amini, MIT
6.s191 class.
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https://arxiv.org/abs/1312.6114
https://www.groundai.com/project/tutorial-deriving-the-standard-variational-autoencoder-vae-loss-function/1
https://www.groundai.com/project/tutorial-deriving-the-standard-variational-autoencoder-vae-loss-function/1
https://www.youtube.com/watch?v=rZufA635dq4
https://www.youtube.com/watch?v=rZufA635dq4

Variational AutoEncoder

Replace the deterministic latent representation with a stochastic sampler.

il BERKELEY LAB
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Variational AutoEncoder

Add a loss regularization term that “encourages” the econder to distribution to match
a prior.

2~ N(p, o)

A
1
1
1

u

7| Encoder Decoder ||/

[N ]

—— o o o o o o o)

Q

VAE loss = (reconstruction loss) + D(p,(z|z)||p(2))
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Variational AutoEncoder

Add a loss regularization term that “encourages” the econder to distribution to match
a prior.

2~ N(p, o)

A
1
1
1

u

7| Encoder Decoder ||/

[N ]
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VAE loss = (reconstruction loss) + D(p,(z|z)||p(2))

DN (1, 0)|IN(0, 1))
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Variational AutoEncoder

You can’t backprop throw a stochastic layer — use the reparameterization trick

z~N(p,0) — 0 % € + |4 where e ~ N(0,1)
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7| Encoder Decoder ||/
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Q

VAE loss = (reconstruction loss) + D(p,(z|z)||p(2))

DN (1, 0)|IN(0, 1))
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Semantically meaningful directions in the learned latent space

Kingma & Welling, arXiv:1312.6114
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https://arxiv.org/abs/1312.6114
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https://papers.nips.cc/paper/7291-introvae-introspective-variational-autoencoders-for-photographic-image-synthesis.pdf
https://github.com/hhb072/IntroVAE

Exploring the learned latent representation of IntroVAE

Interpolations in the latent space correspond to smooth transitions over the
generated data manifold

latent space

“IntroVAE”, Huang et al., NeurlPS 2018, code: github.com/hhb072/IntroVAE

2" BERKELEY LAB M. Mustafa, AI4ESS 2020 30


https://papers.nips.cc/paper/7291-introvae-introspective-variational-autoencoders-for-photographic-image-synthesis.pdf
https://github.com/hhb072/IntroVAE

Generative Adversarial Networks
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Generative Adversarial Networks (GANSs)

We want to learn how to generate how to generate samples that look similar to the
real-data; approximately from the real data manifold.

G X

2" BERKELEY LAB M. Mustafa, AI4ESS 2020 32



Generative Adversarial Networks (GANSs)

We want to learn how to generate how to generate samples that look similar to the
real-data; approximately from the real data manifold.

G X

In other words, we a need a loss function that tells us how close the generated data is
to the real-data manifold:
L= f(G(2))

Can we learn such an f ?

2" BERKELEY LAB M. Mustafa, AI4ESS 2020 33



Generative Adversarial Networks (GANSs)

G X

Some notion of
distance of the
D —— > generated sample
to the real-data
manifold

Yes, we can learn a function that evaluates how close a generated sample is to real
data.

2" BERKELEY LAB M. Mustafa, AI4ESS 2020 34



Generative Adversarial Networks (GANSs)

Discriminator

should learn how
G X to “discriminate”

between real and
fake data
samples.

The generator
should learn how
to “fool” the
- X discriminator by
creating more
realistic samples”

The new network (discriminator/critic) is trained “adversarially.

2" BERKELEY LAB M. Mustafa, AI4ESS 2020 35



GANSs’ loss (original loss)

The discriminators is trained to minimize:

I 1
) _ _
J T 2]E$’\’Pda,ta logD(:’E) QEZsz log(]' D((G(Z)))
learn to give a high score learn to give a low score
to samples from realdata to samples from
generated data
2" BERKELEY LAB M. Mustafa, AI4ESS 2020
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GANSs’ loss (original loss)

The discriminators is trained to minimize:

1 1
JP) = =By, 108 D(@) = S Eznp, log(l — D((G(2)))

In the minimax game formulation, you train the generator to maximize the discriminators loss (to
fool the discriminator):

JG) — _ j(D)

2" BERKELEY LAB M. Mustafa, AI4ESS 2020 37



GANSs’ loss (original loss)
The discriminators is trained to minimize:

1 1
JP) = _ZE, p, . logD(z)—

2

>Exvp. log(1 - D((G(2))

In the minimax game formulation, you train the generator to maximize the discriminators loss (to

fool the discriminator):

J—(G) _ _J(D) '/ \\\"\ ' .

7 \1
’/

But this is has vanishing-gradients when the
discriminator is confused about generated

| | — Minimax

— Non-saturating heuristic

samples; vanishing gradients are bad for
gradient descent optimization

22l BERKELEY LAB

0.2 0.4 0.6 0.8
D(G(2))

1.0

M. Mustafa, AI4ESS 2020
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GANSs’ loss (original loss)

The discriminators is trained to minimize:

1 1
JP) = =By, 108 D(@) = S Eznp, log(l — D((G(2)))

In the minimax game formulation, you train the generator to maximize the discriminators loss (to
fool the discriminator):
75 A\ T T

J(G) _ —J(D) { \\\\

\ I
'\ //
//A —B——
-7 g
- =

The original GAN paper proposes to use a 1 | i
non-saturating “heuristic” loss to train the s = Mimimax |
generator — Non-saturating heuristic
_20 | | | |
(G) B 1 0.0 0.2 0.4 . 0.6 0.8 1.0
JV = —§Ez,\,pz log D(G(2)) D(G(=)
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DCGAN generator architecture

64 z ‘J‘GI I \{
16

32

- Stride 2 64
Project and reshape Deconv 1
Deconv 2
Deconv 3 256
DCGAN architecture, Radford, Metz and Chintala arXiv:1511.06434 Deconv 4 =
G(2)

BERKELEY LAB M. Mustafa, AI4ESS 2020 40



Exploring the learned latent representation: Interpolation

J’

w

DCGAN, Radford, Metz and Chintala, arX|v:1511 .06434
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https://arxiv.org/abs/1511.06434

Exploring the learned latent representation: directions in the
latent space are semantically meaningful (simple arithmetics)

o

man man woman
with glasses without glasses without glasses

woman with glasses

’jH BERKELEY LAB DCGAN, Radford, Metz and Chintala, arXiv:1511.06434 M. Mustafa, AI4ESS 2020 42


https://arxiv.org/abs/1511.06434

Performance of more recent GAN models: StyleGAN-II

StyleGAN-II, T. Karras et al, arXiv:1912.04958

M. Mustafa, AI4ESS 2020 43


https://arxiv.org/abs/1912.04958

StyleGAN

StyleGAN, Karras, arXiv:1812.04948

Latent z € Z Latent z € 2 , Noise
Synthesis network g
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https://arxiv.org/abs/1812.04948

Visualizing the effect of styles in StyleGAN
“Disentangled representations™?

&\ YY .
H i . Y ¢ ‘
2 [

~ T

-, StyleGAN, Karras, arXiv:1812.04948
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https://arxiv.org/abs/1812.04948

Other tasks that make use of an
Adversarial Loss

46



Image-to-image translation (domain-to-domain)

Learns a one-to-one mapping between domain X and Y, training with paired images.

Labels to Street Scene Labels to Facade BW to Color

Day to Night Edges to Photo

/j ‘i_"'“'

f __ . ‘
)

\\- |f

output input l output input output
Pix2Pix, Isola et. al, arXiv:1611.07004
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https://arxiv.org/abs/1611.07004

Unpaired Image to Image Translation (CycleGAN)

Learns a one-to-one mapping between domain X and Y without paired images.

. que}_c Photos ) Zebras T Horses . Summer 7 Winter

Monet — photo zebra —)horse o summer —» winter

horse —» zebra

L adiiie
Cezanne

CycleGAN, Zhu et al, arXiv:1703.10593
2" BERKELEY LAB M. Mustafa, AI4ESS 2020 48
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http://arxiv.org/abs/1703.10593

Cycle Consistency

CycleGAN, Zhu et al, arXiv:1703.10593
D D
¥ 5 &

' G A ; G
D Dy |z p AREE ¢ )
AX AY Y N 7| * ~__7| X Y
g F F i F
X /—\ Y X Y X Y cycle-consistency
\—/ cycle-consistency . \ ﬂ\ """ " loss
F ) loss s O« ‘/.

(a) | (b) | (¢
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http://arxiv.org/abs/1703.10593

Augmented CycleGAN (many-to-many)

e TN
Z, | | z,
N
A B A B
AN N’
(a) CycleGAN (b) Augmented CycleGAN

Augmented CycleGAN, Almahairi et. al arXiv:1802.10151
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http://arxiv.org/abs/1802.10151

Augmented CycleGAN (many-to-many)

Augmented CycleGAN, Almahairi et. al arXiv:1802.10151

’ GA B
— Gpy

— £y

Cycle starting from AxZ,, Cycle starting from BxZ,

Figure 2: Cycles starting from augmented spaces in Augmented CycleGAN. Model components identified with color coding.
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http://arxiv.org/abs/1802.10151

Super-resolution

Given a low-resolution image, learn how to create a high-fidelity high-resolution

image.
SRGAN, Ledig et al, arXiv:1609.04802

rrdroe

bi-cubic

Orlglnal
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https://arxiv.org/abs/1609.04802

Challenges with training GANs in practice

- No evaluation metric that can capture all desired data properties
- generator loss doesn’t correlate with image quality/ desired properties
- optimal transport based losses/metrics have been proposed (e.g. Wasserstein-GAN)
- for evaluation, we resort to domain specific metrics that correspond to the desired property
- for vision tasks the community has developed proxy metrics for human perception

- GAN training dynamics is finicky

2" BERKELEY LAB M. Mustafa, AI4ESS 2020 53



Challenges with training GANs in practice

- No evaluation metric that can capture all desired data properties
- generator loss doesn’t correlate with image quality/ desired properties
- optimal transport based losses/metrics have been proposed (e.g. Wasserstein-GAN)
- for evaluation, we resort to domain specific metrics that correspond to the desired property
- for vision tasks the community has developed proxy metrics for human perception

- GAN training dynamics is finicky
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- Wasserstein GAN, Arjovsky, Chintala and Bottou arXiv:1701.07875
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https://arxiv.org/abs/1701.07875

A “zoo” of proposed GAN losses

GAN DISCRIMINATOR LOSS GENERATOR LOSS

MMGAN L™ = —Eanypy [log(D(@))] = Eznp, llog(1 — D(2))] LEN = Eanp, [log(1 — D(#))]
NS GAN Ly = —Eznp, [log(D(x))] — Eznp, [log(l — D(2))] LGN = —Egnp, [log(D(&))]
WGAN L3 = —Eqnp,y [D(2)] + Esnpy [D(2)] LM =—Egrup, [D(&)]

WGANGP Ly = LAY L AE; Lo, [(IIVD(az + (1 — ad)|l2 — 1)?] L& = —Eznp, [D()]

LSGAN L5 = —Eonp, [(D(2) = 1)%] + Esnpy [D(#)?] LEM = —Esrpy [(D(& — 1))
DRAGAN  LOMOAN — £OMN 4 AE, o a0, [(IIVD(&)]2 — 1)?] LYW — E; . [log(1 — D(2))]
BEGAN Ly = Egnpylllz — AE(@)||1] — ktEsnpy [||& — AE(2)][1] LG = Eznap, |2 — AE(2)]]1]

“‘Are GANs Created Equal? A Large-Scale Study”, Lucic et al, arXiv:1711.10337
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https://arxiv.org/abs/1711.10337

Challenges with training GANs in practice

- No evaluation metric that can capture all desired data properties
- generator loss doesn’t correlate with image quality/ desired properties
- optimal transport based losses/metrics have been proposed (e.g. Wasserstein-GAN)
- for evaluation, we resort to domain specific metrics that correspond to the desired property
- for vision tasks the community has developed proxy metrics for human perception

- GAN training dynamics is finicky
- the discriminator could win the game before the generator starts to produce high-fidelity samples
- introduce some noise in the discriminator (e.g. label flipping, label smoothing, etc)

2" BERKELEY LAB M. Mustafa, AI4ESS 2020 5@



Challenges with training GANs in practice

- No evaluation metric that can capture all desired data properties
- generator loss doesn’t correlate with image quality/ desired properties
- optimal transport based losses/metrics have been proposed (e.g. Wasserstein-GAN)
- for evaluation, we resort to domain specific metrics that correspond to the desired property
- for vision tasks the community has developed proxy metrics for human perception

- GAN training dynamics is finicky
- the discriminator could win the game before the generator starts to produce high-fidelity samples
- introduce some noise in the discriminator (e.g. label flipping, label smoothing, etc)
- generators samples from a single mode of the real data (mode collapse)

- real data
+ generated data

£t
L g,
hE

@l BERKELEY LAB MGAN, Hoang et al, arXiv:1708.02556 M. Mustafa, AI4ESS 2020 57



https://arxiv.org/abs/1708.02556

Challenges with training GANs in practice

- No evaluation metric that can capture all desired data properties
- generator loss doesn’t correlate with image quality/ desired properties
- optimal transport based losses/metrics have been proposed (e.g. Wasserstein-GAN)
- for evaluation, we resort to domain specific metrics that correspond to the desired property
- for vision tasks the community has developed proxy metrics for human perception

- GAN training dynamics is finicky

- the discriminator could win the game before the generator starts to produce high-fidelity samples
- introduce some noise in the discriminator (e.g. label flipping, label smoothing, etc)

- generators samples from a single mode of the real data (mode collapse)
- still an open problem, partial solutions and heuristics that don’t generalize across problems
- we might need to resort to multi-mode priors for more complex data

- the training could be highly unstable (strongly sensitive to hyper-parameters, especially to those

of the optimizer). Many proposals for ameliorating this situation:
- spectral-normalization schemes have been proposed (mixed results)
- generalization of gradient-descent to two-player games might become necessary (very
computationally expensive so far); see : Schafer et al, arXiv:1910.05852.
ﬂu BERKELEY LAB M. Mustafa, AI4ESS 2020 58



https://arxiv.org/abs/1910.05852

Open Questions about
Generative Adversarial
Networks

What we'd like to find out about GANs that we don't know yet.

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

What are the trade-offs between GANs and other generative models?
What sorts of distributions can GANs model?

How can we Scale GANs beyond image synthesis?

What can we say about the global convergence of the training dynamics?
How should we evaluate GANs and when should we use them?

How does GAN training scale with batch size?

What is the relationship between GANs and adversarial examples?

Augustus Odena, 2019: distill.pub/2019/gan-open-problems/, DOI: 10.23915/distill.00018

Ell| BERKELEY LAB

M. Mustafa, AI4ESS 2020
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https://distill.pub/2019/gan-open-problems/

Normalized Flow Models
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Normalized Flow Models

Using invertible transformations (layers), flow models try to explicitly learn the true
data distribution, thus they are optimized using maximum-likelihood.

GAN: minimax the < | I " piscriminator Z SUACEU? ol <7
classification error loss. D(x) G’(z) X
VAE: maximize ELBO. x » Encoder z Decoder o 5/
gy (2[x) po(x|z)
Flow-based I
generative models: x _| Flow ~ [vei=e oy
minimize the negative f(x) f (z)
log-likelihood

“Flow-based Deep Generative Models”, Lilian Weng
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https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Flow++

et al. arXiv:1902.00275
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https://arxiv.org/abs/1902.00275

More resources

In addition to all the links in these slides, | have enjoyed reading/viewing the following
material while | am preparing this lecture:

- “Introduction to generative models”, Mihaela Rosca

- “Deep Generative Models”, Ava Soleimany, MIT, 6.S191

- “GANs & Unsupervised Representation Learning” . Yoshua Bengio

- “Energy-based GANs & Other Adversarial Training”, Yann Lecun

- “Deep Unsupervised Learning”, UCB, CS294-158

Practical tutorials with code:

- DCGAN: PyTorch, TensorFlow/Keras
- VAE: PyTorch, TensorFlow/Keras
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http://elarosca.net/intro_generative_models.pdf
http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L4.pdf
https://www.youtube.com/watch?v=y-SrsyckRbo
https://www.youtube.com/watch?v=88nKI-qqWEo&list=PLJscN9YDD1buxCitmej1pjJkR5PMhenTF&index=7&t=0s
https://sites.google.com/view/berkeley-cs294-158-sp19/home
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://www.tensorflow.org/tutorials/generative/dcgan
https://github.com/pytorch/examples/tree/master/vae
https://www.tensorflow.org/tutorials/generative/cvae
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