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AI4ESS Hackathon Overview

« The goal of the AI4ESS hackathon is to
allow participants to practice their
machine learning skills on Earth System
Science challenge problems

* Format is useful for both Al and ESS
practitioners

— ESS practitioners get to utilize Al in a domain
they are more familiar with

— Al practitioners get to learn about the special
qualities of different ESS datasets




Daily Schedule

Description

2 PM to 6 PM Mountain Time

Hackathon Shared Work Period

5to 6 PM

Slack Open Q & A

Monday-Wednesday 6 PM Mountain Time

Submit Team Notebook

Thursday 6 PM Mountain Time

Submit 2 Google Slides for Friday Presentation




GOES Machine Learning Challenge Problem

David John Gagne, Gunther Wallach, Charlie Becker, Bill Petzke

The Geostationary
Operational Environmental
Satellite 16 (GOES-16) is a
weather satellite that orbits
the Earth

It can provide a hemispheric,
multispectral view of cloud
patterns at high space and
time resolution through its
Advanced Baseline Imager
(ABI) camera.

The satellite holds the
Geostationary Lightning
Mapper (GLM) instrument
that records lightning flashes
across the hemispheric view
of the satellite




The Challenge

« Lightning kills roughly 30 people per year in the United States
(https://www.weather.gov/safety/lightning-victims) and can have large economic
impacts by disrupting outdoor work and events and by sparking fires.

« Improved short term prediction of lightning onset can help protect life and property by
ensuring that people can get to safety with sufficient lead time.

 The economic impacts of lightning protection practices can also be reduced by
improving the prediction of when lightning is expected to end.




« The Advanced Baseline Imager (ABI), and the lightning counts from the Geostationary
Lightning Mapper (GLM) are the two data types we care about from the GOES-16 satellite.

 The ABI camera functions with a spatial resolution of 2km, with a temporal resolution of 5
minutes.

« We select for 32 x 32 sized image patches across our domain (CONUS Midwest), at an
unsampled rate of every 20 minutes from 2019-03-02 through 2019-10-01.

« We used these same spatio-temporal patches to aggregate all lightning flash counts
within that patch but lagged by one hour. Total aggregated data was output at a daily
interval.

 The aggregated data has about 3600 spatio-temporal patches per day, with an X and Y
dimension of 32.



Image Interpretation
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Axis of strong middle
/ upper tropospheric
jet streak

Mountain waves
downwind of the
Coastal Ranges and
the Sierra Nevada.

Depending on the
topography as well
as the atmospheric
temperature and
moisture profile,
mountain waves
might show up
better on any of the
water vapor bands.
You may have to
apply different
enhancements as
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GOES-16 water vapor Band 10, Band 9 and Band 8 images at 12:02 UTC on 13 April 2017
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Dimensions

Dimen
Band
Patch
X

Y

Potential Input Variables

. Output Variables

sion Name Description Size
ABI Band Number 4 (Bands 8,9,10,14)
spatio-temporal patch ~3600 per day
X-plane 32
Y-plane 32

Variable Name Units Description

abi (Band 08) K
abi (Band 09) K
abi (Band 10) K
abi (Band 14) K

Upper-level Water Vapor
Mid-level Water Vapor
Lower-level Water Vapor

Longwave Window

Variable Name Units Description

flash_counts -

Lightning strike count



Example Patch Data

Convolutional Neural Networks (CNNs) work well to capture spatial structural differences.

Residual Networks can be used to increase the effectiveness of the depth of the NN.

Exmaple Patch with High Lightning Activity Exmaple Patch with No Lightning Activity
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Machine Learning Approaches

* Recently deployed observational systems combined with advances in machine
learning have the potential to improve the short-term prediction of lightning by
associating broader scale weather patterns with the future occurrence of lightning in
that area.

« Combining information from the GOES-16 Satellite in the form of the water vapor
bands from the Advanced Baseline Imager (ABI) and lightning counts from the
Geostationary Lightning Mapper (GLM), we are able to make machine learning
predictions using a Residual Networks (ResNet) architecture.



HOLODEC Machine Learning Challenge Problem

Matt Hayman, Aaron Bansemer, David John Gagne, Gabrielle Gantos, Gunther Wallach, Natasha Flyer




Holographic Detector for Clouds (HOLODEC)

« Airborne instrument that measures liquid
droplets and ice crystals in natural clouds

« Droplets sizes, concentrations, and their relative
positions influence the formation of drizzle and
rain

* |ce crystal size, shape, and concentrations
control radiative properties of cirrus

« Used in studies of cloud dynamics, precipitation
formation, and radiative transfer




Advantages

* One of the only instruments that can reliably
measure mixed-phase (ice crystals and liquid
droplet) clouds

« Simultaneously measure all particles in the
volume between the arms (13 cm?®) in a single
picture

« Allows retrieval of the 3-D position of every
cloud particle

Y (mm)



Inline Holographic Imaging

 Microscopic imaging using laser
light source, the hologram is
simply a 2-D picture

« Particles are intentionally
unfocused

» Refocusing performed in
software

« Finding best focus returns the
3-D position of the particle (x, v,
z) as well as the size (d) and
shape

« Example hologram here shows 5
unfocused particle (large picture),
and then the refocused image at
the z-position of each particle




Instrument Challenges

* A single hologram may contain
1000+ particles
« Traditional refocusing is
performed 1000 times for each
image which searching for
particles
« Computationally expensive and
labor intensive, up to 2 million
core hours per project o
 Processing is primary bottleneck _ &
in improving probe performance .= =
« Can machine learning perform
better?

Hologram in Pacific cumulus, 2015



— Synthetic grayscale hologram images

—  X-position of each particle

— Y-position of each particle

—  Z-position (between the arms) of each particle
— Diameter of each particle

— Reference variable to link particles to holograms

Objective: Can x, y, z, and D for each particle be predicted based on the
hologram image?

« Synthetic data using simplified holograms T e
« Circular droplets only £ = ____=_==‘-----___.= =E=== “f_‘_=
 netCDF format === =“‘.=g"‘éa_——§§§§§
« Training data files consist of =E EEsS——

= = =—
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Dataset 1: Single-Particle
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Example single-particle synthetic hologram with x, y, z, and D indicated



Dataset 2: Three-Particle
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Example three-particle synthetic hologram with x, y, z, and D indicated



GECKO-A Machine Learning Challenge Problem

Siyuan Wang, Alma Hodzic, David John Gagne, Keely Lawrence, Charlie Becker, Natasha Flyer

Anthropogenic

-e
-m
-m
-e
o\
5%--

Radiative _ _
Forcing e Natural and anthropogenic sources emit a
large number of volatile organic compounds
yolatle dam . organic VOCs)
Compounds ’ Aerosols Wy e VOCs gases undergo complicated chemical

’ Clouds reactions and physical processes in the
atmosphere, forming organic aerosols.

Air
Quality

e ~100 emitted gases but their photochemical
oxidation in the atmosphere leads to hundreds

—— of thousands of volatile products that can

----- ~a~ 2 VW7 - . condense to form organic aerosols

Biogenic Biomass Burning

Organic aerosols have significant direct and indirect radiation effect.
VOCs and organic aerosols also affect air quality and human health.

To evaluate the broad impacts of VOCs on air quality, human health, and the climate system,
we need to understand the sources and fates of these compounds



Chemical Mechanisms: Center Role in Chemistry Forecast

Laboratory experiments
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Chemical Mechanism
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Chemical Mechanisms: Very Complicated!

NCyH,, Acetaldehyde Isoprene CO Methane Toluene Acetone

e Left figure: cool visual illustration of
the Leeds Master Chemical
Mechanism (MCM), a near-explicit
gas-phase chemical mechanism,
with +16,000 chemical reactions

e Although complicated, MCM is
constructed based on quite simple
framework.

e Yet, most”® air quality models and
chemistry-climate models cannot
afford to run MCM!

*it’s not impossible! It’s just so expensive that

" PR mostly it’s not practical and meaningful at all.
A. C. Lewis, Science 2018 =~ - . A



GECKO-A: Based on First Principles
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Aumont et al., Faraday Discuss. 2013

GECKO-A: Generator of Explicit Chemistry and Kinetics
of Organics in the Atmosphere

We tell GECKO-A how atoms, bonds, and functional
groups in molecules/radicals behave, then GECKO-A will
predict what reactions it may undergo.

GECKO-A generated chemical mechanisms are extremely
large and complicated. For instance -

a-pinene is a common compound emitted from trees. Its
oxidation mechanism involves over 400,000 compounds
and over 2,000,000 chemical reactions!

GECKO-A reveals unique information that none other
mechanisms can offer.

No 3-dimensional models can afford to run GECKO-A in
the foreseeable future.



Formation of Organic Aerosols

All products
(many...)

Precursor
(directly emitted
from sources)

Categorize based
on their volatilities

volatile
compounds

® volatile
@ compounds

Gas-particle partitioning

: : © o Gas-phase
000

®¢ ©

®¢%0 ©
0e9®0

Particle-phase

The products will partition between the
gas-phase and particles-phase.

The partitioning is determined by the
property of the molecule (e.g., volatility)
and the environmental conditions (e.g.,
temperature)

Organic aerosols (OA): very different
properties & environmental impacts



GECKO-A Challenge: Build An Emulator For 3-D Models?

GECKO-A Training Library Machine-Learning Emulator 3-D Models
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e Many inspiring applications out there: machine-learning emulators using explicit/process-level
models, and implementing the trained emulators into large-scale models. Such
explicit/process-level models are otherwise too expensive for large-scale models.

e The goal of this project is to train the machine-learning emulator using the “library” generated
by the hyper-explicit chemical mechanism, GECKO-A.



Goal: Build Emulator to Predict the Total Organic Aerosol
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GECKO-A Library:
e 2000 GECKO-A simulations: in each run, we run GECKO-A under certain condition for 5 days
e 2000 input files (csv).
e Each file contains: (i) mass of precursors; (i) mass of products in the gas-phase; and (iii) mass
of products in the particle-phase. All (i)-(iii) as a function of time.



Machine Learning the Warm Rain Process

* The warm rain formation process is critical for weather and climate prediction.
* Simply parameterized in large scale models with bulk microphysics

* More detailed treatments computationally expensive

— Stochastic collection

Ask 2 questions:

1. Can we simulate warm rain using alternative methods, what does it
do to cloud susceptibility and cloud feedback?

2. Can we use Neural Network emulators (NN) to then speed up this
process and reproduce these changes....



Methodology

* Replace existing CAM6-MG2 BULK microphysics warm rain formation process
(Khairoutdinov & Kogan 2000: regressions from LES experiments with explicit bin
model)

* Instead use the Stochastic Collection Kernel and process from a BIN microphysical
model (Tel-Aviv University [TAU] bin model)

Microphysics Scheme Bulk Bin

Types

Distribution Distribution
usually assumed discretized
to follow analytic into bins
functional form

particle
distribution
function

particle
distribution
function

particle size or mass particle size or mass

Bin: Explicit interactions between sizes closer to
physical equations, but too computationally
expensive to calculate processes

Bulk: Efficient, but approximates interactions
between drop sizes



BULK: Auto-conversion (Ac) & Accretion (Kc)

Khairoutdinov & Kogan 2000: regressions from LES experiments with explicit bin model

_ (0_4-) = i (29)
Ac = - e QC c > o
C)f auto
B _c')(]_r = 67 1.15 33
Ke= v (4.4, (33)

e Auto-conversion an inverse function of drop number
e Accretion is a mass only function

Balance of these processes (sinks) controls mass and size of cloud drops



* Break BULK size distributions for gc,Nc (liquid) and gr,Nr (rain) into BINS

* Run stochastic collection kernel on the bins

* Find minimum between peaks of distributions to separate gqc and gr

* Recompose qc,Nc and gr,Nr distributions

* Difference before and after distributions are tendencies for gc,Nc,qr,Nr
* Apply a mass fixer to ensure no loss of mass or negative mass (TAU)

* Then: build a neural network emulator (TAU-ML)
— What ML methods are being used.



Using machine learning to emulate

Run CESM2/CAM6 for two years and
obtain instantaneous hourly output
Filter and subsample data to find
grid points with realistic amount of
cloud water

Transform and normalize inputs and
outputs

Train classifier deep neural networks
to classify zero and non-zero

Train regression deep neural
networks to predict non-zero values
Evaluate and interpret neural
network predictions.

Emulator Inputs
q,: cloud droplet mixing ratio

g,- rain drop mixing ratio

N, cloud droplet number concentration
N,: rain drop number concentration

p: air density

F.: Cloud fraction

F,: Precipitation fraction

dg /ot > 0?
ANN
Classifier

dN_/dt < 0?

ANN
Classifier

dN /ot = 0?

ANN
Classifier

No
ANN

Regressor

dg /dt=
ANN
Regressor

dg,/ot=
-dg, /dt

/dt_ dN /dt=
ANN
Regressor

+dN Jot=
ANN
Regressor




What is El Niho?

® Cycle of warm and cold temperatures in
the equatorial Pacific Ocean
e Dominant pattern that influences
seasonal temperature
® Broad implications for climate-sensitive
sectors, such as energy and agriculture
e How is El Nino measured? Nifo3.4 Index
o Rolling 3-month average of sea
surface temperatures in the
equatorial Pacific

Source: National Oceanic and Atmospheric Administration

Equatorial Pacific Ocean with abnormally
warm temperature: El Nifio event




Learning to forecast El Niho

What is the current state of the art?
® Most ENSO forecasts are issued by weather
centers, who run physics-based models

Met Office

Why use neural networks?
® Potential for more accurate forecasts?
® Lighter computational cost during inference
e Challenge: limited historical observations
to use as training data for a neural network
e Solution: train on simulated climate data
Norwegian
from Atmosphere-Ocean General Clirrats Contar

Circulation Models (AOGCMs) _
Max-Planck-Institut
fur Meteorologie




What questions will we explore during the hackathon?

Predictor Data: surface temperature

e Data: How does an increase in data
affect the performance of machine
learning?

e Validation: how can we ensure that we
validate the model rigorously?

e Ensembling: What combination of
models and training schemes creates
the best forecasts?

® Lead time: How far ahead can machine
learning make skillful predictions?

e Extendability: Can we use our neural
network architecture to forecast
temperatures on land?

Target Data:

11111111111

NINO3.4 Index (°C)

82 198+ 1988 1983 1990 1992 199+ 1936 1938 2000 2002 2004 2008 2008 2010 2012 2014
Time Period
Source: Columbia University



What might the forecasts look like? (4 month lead time)

- Ham et. al.
CNN+LSTM

21 —— SEASS '
mees Observed

pd

Nino-3.4 Index

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Time

SEASS: seasonal forecasting model from the European Center for Medium-range Weather Forecasts
CNN+LSTM: a deep learning architecture designed to learn from spatial and time series data



There’s still work to do on ENSO forecasting!

e Why work on this problem?

| CNN+LSTM Error 7
101 — Ham et al Error
w— SEASS Error
0.8 - Distribution of Target Nino3.4 Indices

-

® Deep learning’s performance at ug,
extreme values of the Nino3.4 L
index still has room for
improvement!
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Target Nino 3.4 Index




How to Access Jupyterhub

* The hackathon notebooks are on Github at
https://github.com/NCAR/ai4ess-hackathon-2020 along with links to Google Colab for each
challenge notebook

Hackathon Jupyterhub

« Go to the link emailed to you

« Log in with the Gmail/G-Suite Account you provided at registration

* A loading screen with a progress bar will appear

* Next, a Jupyterlab window will appear

« Enter the aidess-hackathon-2020/notebooks directory and open the challenge
notebook assigned to your team



https://github.com/NCAR/ai4ess-hackathon-2020

