Microarchitectural Analysis and
Optimization Techniques

Gunther Huebler
Collaborators: Vincent Larson, John Dennis

All the Work Presented Has Been Implemented in
CLUBB (Cloud Layers Unified By Binormals)

CLUBB is a model that solves a set of partial differential equations in height
and time.

Usable as a standalone model or as a subgrid parameterization in large scale
models.

Implemented by default in CAM (Community Atmosphere Model), and various
other models.

CLUBB costs roughly 30% of CAM. Optimizing it can go a long way.

Outline

- Intel’s VTune Amplifier is a powerful tool

- There are multiple ways to diagnose bottlenecks

- Code changes discussed here have significantly reduced the cost of CLUBB
- Intel’s MKL_VML functions are quite versatile

- Lapack libraries are less efficient than compiling from source

VTune Amplifier is a Powerful Way to Analyze
Code Performance

VTune Amplifier is a performance analysis tool developed by Intel.

It can utilize Performance Monitoring Units (PMUs) to provide hardware
event-based sampling.

Code profiles include detailed hardware specific metrics:
- Scalar/Vector/Division instruction counts
- Counts of stalls due to Li(1/2/3) cache misses
- Branch Clears

Exploration modes include hotspots and tree breakdowns.

Using VTune to Analyze Polynomial Calculation

Consider an 8th degree polynomial: ajxs agxra,x61ag3 axtax3ran3raxta,
Compare: Horner’s Method: (((((((agx+ag)x+ay)x+ag)x+a;)x+a,)x+ag)x+a,)x—+ a;

Custom Implementation: ((((agx + ag)x®*+ (ayx + ag))x*+ (azx + a,))x*+ (agx + a,))x + a,

Horner’s method: Minimizes calculations, but has Custom Implementation: Slightly more calculations
a large dependency chain required, but breaks up the dependency chain

VTune’s Assembly Viewer, Instruction Count, Clocktick Metric, and CPI Rate

Function / Call Stack Clockticks ¥ Instructions Retired CPI Rate
horner 1,318,000,000 3,234,000,000 0.408
Address o | So... ‘ Assembly ‘ ¥ Clockticks ‘
0x402b8c Block 2:
0x402b8¢c 20 vmovapd %ymmi1l, %ymm3 400,000
0x402b91 20 vfmadd231pd %ymm2, %ymml2, %ymm3 147,600,000
0x402b96 20 vfmadd213pd %ymm1@©, %ymm2, %ymm3 400,000
0x402b9b 20 vfmadd213pd %ymm9, %ymm2, %ymm3 358,800,000
0x402ba0 20 vfmadd213pd %ymm8, %ymm2, %ymm3 800,000
0x402bab 19 vfmadd213pd %ymm7, %ymm2, %ymm3 212,400,000
0x402baa 19 vfmadd213pd %ymm6, %ymm2, %ymm3 3,200,000
0x402baf 19 vfmadd213pd %ymmS, %ymm2, %ymm3 392,800,000
0x402bbh4 19 vfmadd213pd %ymm4, %ymm3, %ymm2 201,600,000

Clockticks are a simple way to compare performance.

Function / Call Stack Clockticks v Instructions Retired CPI Rate
custom 1,618,800,000 5,157,600,000 0.314
Address 4 | So... Assembly W Clockticks

0x402f3c Block 1:

0x402f3c 87 vmovapd %ymml2, %ymmd4 400,000
0x402f41 87 vmovapd %ymml@, %ymml5 160,400,000
0x402f46 85 vmulpd %ymm2, %ymm2, %ymm6 400,000
0x402fda 87 vfmadd231pd %ymm2, %ymml3, %ymmd 344,000,000
0x402f4f 87 vfmadd231pd %ymm2, %ymmill, %ymmi15 0
0x402f54 a7 vfmadd213pd %ymml5, %ymm6, %ymm4 157,200,000
0x402f59 88 vmovapd %ymm8, %ymmi5 2,800,000
0x402f5e 88 vfmadd231pd %ymm2, %ymm9, %ymml5 340,400,000
0x402f63 88 vfmadd213pd %ymml5, %ymm6, %ymm4 0
0x402f68 88 vmovapd %ymml, %ymml5 196,000,000
0x402f6¢ 88 vfmadd231pd %ymm2, %ymm7, %ymml5 400,000
0x402f71 88 vfmadd213pd %ymml5, %ymm6, %ymm4 369,600,000
0x402f76 87 vfmadd213pd %ymm5, %ymm2, %ymm4 47,200,000

The custom implementation is about 20% slower than Horner’s

Horner’s method is able to use fewer operations by efficient use of fused multiply-add (FMA)
instructions, but the long dependency chain hurts the clocks per instruction (CPI) rate.

How would these compare if compiled with -no-fma?

VTune Analysis Compiling with -no-fma

Function / Call Stack Clockticks v Instructions Retired CPI Rate Function / Call Stack Clockticks v Instructions Retired CPI Rate
horner 3,985,200,000 6,505,600,000 0.613 custom 3,040,800,000 6,236,000,000 0.488

Address 4 | So... Assembly W Clockticks Address 4 | So... Assembly W Clockticks
0x402h8c Block 2: 0x402f5d Block 1:

0x402b8c 20 vmulpd %ymmie, %ymm@, %ymml2 400,000 0x402f5d 87 vmulpd %ymml2, %ymm2, %ymmo 1,200,000
0x402h91 20 vaddpd %ymm9, %ymm12, %ymm1l4 400,000 0x402f62 85 vmulpd %ymm2, Seymm2, %ymm3 94,000,000
0x402b96 20 vmulpd %ymm14, %ymm@, %ymmls 38,400,000 0x402f66 87 vaddpd %ymml1l, %ymmO, %ymml 0
0x402b9b 20 vaddpd %ymm8, %ymmi15, %ymml2 474,000,000 0x402feb 87 vmulpd %ymmiO, Symm2, %ymme 439,200,000
0x402bad 20 vmulpd %ymmi2, S%ymm@, %ymmld 400,000 0x402f70 | 87 vmulpd %ymm3, %ymml, %ymml 400,000
0x402ba5 20 vaddpd %ymm7, %ymmild, %ymm12 800,000 0x402f74 |87 vaddpd S%ymmg, %ymm@, %ymm@ 94,000,000
0x402bad 20 vmulpd %ymmi2, %ymm@, %ymml5 42,000,000 g:iggzg 2; ::3?23 ::::gr :ﬁ::i’ ::22; 410 800003
Ox402bae |20 vaddpd %ymn, %ymmis, %ymmi2 455,600,000 0x402f81 | 88 vmulpd %ymms: %ymmz: %ymm1 2.800.000
0x402bb2 20 vmulpd %ymmi2, %ymm, %ymm1id 0 0x40286 88 vaddpd %ymm7, %ymml, %ymml 75,600:000
0x402bh7 19 vaddpd %ymm5, %ymml4, %ymml2 4,800,000 0x40218a ag vaddpd %ymml, %ymm@, %ymmo 0
0x402bbb 19 vinulpd %ymmi2, %ymmO, %ymml5 46,800,000 0x402f8e 88 vmulpd %ymm3, %ymm@, %ymmo 411,200,000
0x402bc0 19 vaddpd %ymm4, %ymml5, S%ymm12 693,200,000 0x402f92 88 vmulpd %ymmé, %ymm2, %ymm3 93,600,000
0x402bcd 19 vmulpd %ymm12, %ymm@, %ymml4 61,600,000 0x402f96 | 88 vaddpd %ymm5, %ymm3, %ymml 143,200,000
0x402bc9 19 vaddpd %ymm3, %ymml4, %ymm12 245,600,000 0x402f9a 88 vaddpd %ymmi, %ymm@®, %ymmo 0
0x402bcd 19 vmulpd %ymml2, %ymmo, %ymme 518,000,000 0x402f9¢ 88 vmulpd %ymm2, %ymm@®, %ymm2 534,800,000
0x402bd2 19 vaddpd %ymm2, %ymm@, %ymmo 1,403,200,000 0x402fa2 87 vaddpd %ymm4, %ymm2, %ymme 740,000,000

Without FMA instructions, Horner’s method uses roughly the same number of operations. But now,
it’s affected even more negatively by its dependency chain.

Compiled with -no-fma, the custom implementation is about 25% faster than Horner’s.

The Custom Polynomial Reduces the Cost of CLUBB by 3%

CLUBB uses an 8th order polynomial to estimate saturation vapor pressure
- "Polynomial Fits to Saturation Vapor Pressure” Falatau, Walko, and Cotton. (1992)
Journal of Applied Meteorology, Vol. 31, pp. 1507--1513
When compiled in CESM, the -no-fma option is used.

The custom method does not produce bit-for-bit identical results, but is mathematically equivalent.

Within CLUBB, the custom implementation was faster, regardless of compiler options.

VTune Can Diagnose the Expense of Library Functions

libm_pow_19 is a library function used to calculate arbitrary floating point powers
- For example: 2*x, where x is some floating point value

We cannot optimize a library function, the only hope is to analyze the section of code which requires
the use of such a function.

VTune’s Caller/Callee breakdown within its hotspot analysis is a perfect tool to accomplish this.

Cost Analysis of libm_pow_19

fia Hotspots Hotspots by CPU Utilization ~ @

The caller/callee breakdown

Analysis Configuration ~ Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform shows that the cost of
. Function CPU Time: Total ¥ CPU Time: Self Callers CPU Time: Total CPU Time: Self ¥ hbm pOW 19 iS Coming from
gotrs 1U.I%0 U.7% q — —

7 ‘ = | v __libm_pow_I9 100.0% 10.219s D it th th f H .

B TSR RLY i) 0 skx_func 69.1% 7.066s U 1S use within the following

:E:tranc 22: Zg: xp3_lg_2005_ansatz 16.4% 1.674s B functions:

r b_iz 8.9% 3'5% lg_2005_ansatz 14.3% 1.462s B _ SkX func

ght - - calc_surface varnce 0.2% 0.017s —
dger 6.6% 6.6% - xp3_lg_2005_ansatz
- lg_2005_ansatz
ps Ox5f62c7 17 | mov %rsi, %ri2
59 1Skx = xp3 / (max(xp2, x_tol**two))**three_halves 0x5f62¢ 62 vmovsdq (%rdx), %xmme@ .
60 ! Calculation of skewness to help reduce the sensitivity of thig oi5f32: 62 vmulsd %xmm@, %xmmO, %xmml USlng the SOUI’CG/&SSGmbly
61 ! small values of xp2.] 0x5f62d2 62 vmulsdq ©x5518ae(%rip), %xmmi, %xmm2 .
Skx = xp3 / (xp2 + Skw_denom_coef * x_tol**2 |)**three_halves ; ox5f62da 62 vmovsdq 0x23d35e(%rip), %xmmi viewer on one Of these
63 | mmo . .
64 ! This is no longer needed since clipping is already | 0x562e6 62 callq_ 0x7e12a0 <pow> fUIlCthIlS, We C&Il flnd the
65 ! imposed on wp2 and wp3 elsewhere in the code | X e BIOCR Z2: o .
66 | oxsie2eb 62 vmovapd %xmmo, %xmmi exact blt Of COde WheI’e thlS
67 ! I turned clipping on in this local copy since thlp3 and rtp3 ¢ | 0x5f62ef 62 vmovsdq (%ri2), %xmm@ . .
N loses e function is used.

68

if (1l_clipping_kluge) then

vdivsd %xmmi, %xmm@, %xmm@

Now that we know the exact spot in code where this expense comes from, we can find a way

to optimize.

Optimization of libm_pow_19

The expense section of code has a constant power. More importantly the power is a multiple of 1/2.

Arbitrary powers can be expensive, but sqrt() functions are well optimized.

Using the equivalence x*(3/2) = x * x*(1/2), we can refactor the code to become:

sqrt() isn’t cheap, but it is cheap relative to libm_pow_19. This change produces bit-different results,
but reduced overall runtime by ~10%.

Intel Has Special Vectorized Math Functions

Intel has a library that contains regular and special math functions, MKL_VML functions.

Many cover relatively simple functions:
- multiplication
- division
- powers and exponentials
- logarithms

There are also “special” math functions, which are particularly useful to CLUBB

- vdedfnorm() computes the cumulative normal distribution function
- This replaces the need for the slow unvectorizable erf() function

R E RS

Other functions also help to help index and copy values
- vdpack and vdunpack

MKL VML Functions Make the Cloud Fraction
Calculation Much Faster

CLUBB computes a cloud faction based on
the mean cloud water mixing ratio.

The cloud fraction is not significant on
most grid levels.

Calculations using the expensive erf()
function is only needed on a fraction of the
levels.

Using vedfnorm over all levels is less
efficient than using the slow erf() on select
levels.

2500

Height [m]
> & 8
8 8 8

o
S

o

Cloud Fraction
B |---oumm|
B
E
L}
B
-.--..-...

| |
0 20 40 60 80 100
cloud_frac [%)

] Cheap Estimation
[] Expensive Calculation

Cloud Fraction Calculation with MKL VML Functions

Cloud Fraction

&
25001g Use fast estimation
i : where possible

: “Unpack” results

1500/ " " " e meeme Copy values into with vdunpackm()

contiguous memory

Height [m]

1 w
000 ",o

cloud_frac [%)] Calculate quickly

L] Cheap Estimation with vedfnorm()
] Expensive Calculation

The improvement in performance with this method depends on the number of grids levels requiring an
expensive calculation, due to the extra packing step adding overhead.

MKL_VML Overhead Diminishes Quickly

Cloud Fraction Calculation Time vs Number of Expensive Claculations

Time (ms)

0.005

0.004

0.003

0.002

0.001

0.000
0

10

20

Expensive Calculations Required

30

40

® VKL
@ Original

The MKL_VML special function method
performs better once more than 5 grid levels
require an expensive calculation.

The number of number vertical levels
requiring an expensive calculation is almost
always great enough to make this
refactoring improve computational
efficiency.

The Mixing Length Calculation is not Vectorizable

CLUBB contains a calculation to estimate the mixing length between vertical levels.

This is done by modeling a ‘parcel’ starting at each grid level, then determining how far that parcel
may move by simulating the change in its turbulent kinetic energy (TKE).

The change in the TKE for a specific parcel at level n4-1 depends on its change at level n.
The calculation for a parcel ends once TKE=0.

Due to the uncertain stopping condition and data dependency, the calculation cannot be fully
vectorized.

Visualization of the Mixing Length Calculation

] ! g
s : 3
el T =
| P
> P >
4
P
3
P
2
P
1 1
Parcels starting at each nz are tracked up. Vectorizing each calculation for
These calculations have dependencies and each parcel is possible, but results
can’t vectorize. in many extra calculations,

ultimately degrading performance.

Non-vectorizable Calculations May be Partially
Vectorizable

Fully vectorizing this calculation increases cost due B
to unnecessary calculations. =
5

The first calculation of each parcel is always = P
necessary. — 6

’ P
Vectorizing the first calculations for each parcel E P i
reduces cost. 4

This Reduces the Cost of The Mixing Length
Calculation in CLUBB by ~50%

This is works because not all parcels
rise the same amount.

All calculations are necessary with
this scheme.

There are less scalar instructions and
more vectorized instructions.

Vertical Height (nz)

4
/ Vectorized

9 T Non-vectorized

Lapack Source is More Efficient Than the MKL

Library Implementation

CLUBB uses Lapack routines to solve large arrays.

The accepted approach is to use the well known
Lapack methods.

There are two options; use Intel’s MKL Lapack library
or compile Lapack from source.

Source Lapack is faster on all systems, regardless of
compiler options.

Lapack Band Solve (dghsv) Time Comparison
== Source == MKL
0.25

0.20

0.15

ms)

(

0.10

Time

0.05

0.00

2000 4000 6000 8000

Vertical Elements

Small Changes Have Large Impacts

All the refactorings discussed here have been implemented in CLUBB.

Most microarchitectural optimizations do not produce bit-for-bit identical results, but are usually
equivalent mathematically.

Over the past year, the cost of CLUBB is roughly 25% of what it used to be.

