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All the Work Presented Has Been Implemented in 
CLUBB (Cloud Layers Unified By Binormals)

CLUBB is a model that solves a set of partial differential equations in height 
and time.

Usable as a standalone model or as a subgrid parameterization in large scale 
models.

Implemented by default in CAM (Community Atmosphere Model), and various 
other models.

CLUBB costs roughly 30% of CAM. Optimizing it can go a long way.



Outline

- Intel’s VTune Amplifier is a powerful tool

- There are multiple ways to diagnose bottlenecks

- Code changes discussed here have significantly reduced the cost of CLUBB

- Intel’s MKL_VML functions are quite versatile

- Lapack libraries are less efficient than compiling from source



VTune Amplifier is a Powerful Way to Analyze 
Code Performance 

VTune Amplifier is a performance analysis tool developed by Intel.

It can utilize Performance Monitoring Units (PMUs) to provide hardware 
event-based sampling.

Code profiles include detailed hardware specific metrics:
- Scalar/Vector/Division instruction counts
- Counts of stalls due to L(1/2/3) cache misses
- Branch Clears

Exploration modes include hotspots and tree breakdowns.



Consider an 8th degree polynomial: a9x
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Custom Implementation: ( ( ( ( a9x + a8 )x
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Using VTune to Analyze Polynomial Calculation

Horner’s method: Minimizes calculations, but has 
a large dependency chain

Custom Implementation: Slightly more calculations 
required, but breaks up the dependency chain



VTune’s Assembly Viewer, Instruction Count, Clocktick Metric, and CPI Rate

Clockticks are a simple way to compare performance. 
The custom implementation is about 20% slower than Horner’s

Horner’s method is able to use fewer operations by efficient use of fused multiply-add (FMA) 
instructions, but the long dependency chain hurts the clocks per instruction (CPI) rate. 

How would these compare if compiled with -no-fma?



VTune Analysis Compiling with -no-fma

Without FMA instructions, Horner’s method uses roughly the same number of operations. But now, 
it’s affected even more negatively by its dependency chain.

Compiled with -no-fma, the custom implementation is about 25% faster than Horner’s.



The Custom Polynomial Reduces the Cost of CLUBB by 3%

CLUBB uses an 8th order polynomial to estimate saturation vapor pressure
- ''Polynomial Fits to Saturation Vapor Pressure'' Falatau, Walko, and Cotton.  (1992)  

Journal of Applied Meteorology, Vol. 31, pp. 1507--1513

When compiled in CESM, the -no-fma option is used.

The custom method does not produce bit-for-bit identical results, but is mathematically equivalent.

Within CLUBB, the custom implementation was faster, regardless of compiler options. 



VTune Can Diagnose the Expense of Library Functions

libm_pow_l9 is a library function used to calculate arbitrary floating point powers
- For example: 2^x, where x is some floating point value

We cannot optimize a library function, the only hope is to analyze the section of code which requires 
the use of such a function.

VTune’s Caller/Callee breakdown within its hotspot analysis is a perfect tool to accomplish this.



Cost Analysis of libm_pow_l9

The caller/callee breakdown 
shows that the cost of 
libm_pow_l9 is coming from 
its use within the following 
functions:

- skx_func
- xp3_lg_2005_ansatz
- lg_2005_ansatz

Using the source/assembly 
viewer on one of these 
functions,  we can find the 
exact bit of code where this 
function is used.

Now that we know the exact spot in code where this expense comes from, we can find a way 
to optimize. 



Optimization of libm_pow_l9

The expense section of code has a constant power. More importantly the power is a multiple of 1/2.

Arbitrary powers can be expensive, but sqrt() functions are well optimized.

Using the equivalence  x^(3/2) = x * x^(1/2), we can refactor the code to become: 

sqrt() isn’t cheap, but it is cheap relative to libm_pow_l9. This change produces bit-different results, 
but reduced overall runtime by ~10%. 



Intel Has Special Vectorized Math Functions 
Intel has a library that contains regular and special math functions, MKL_VML functions.

Many cover relatively simple functions:
- multiplication
- division
- powers and exponentials
- logarithms

There are also “special” math functions, which are particularly useful to CLUBB

- vdcdfnorm() computes the cumulative normal distribution function
- This replaces the need for the slow unvectorizable erf() function

Other functions also help to help index and copy values
- vdpack and vdunpack



MKL_VML Functions Make the Cloud Fraction 
Calculation Much Faster

CLUBB computes a cloud faction based on 
the mean cloud water mixing ratio.

The cloud fraction is not significant on 
most grid levels.

Calculations using the expensive erf() 
function is only needed on a fraction of the 
levels.

Using vcdfnorm over all levels is less 
efficient than using the slow erf() on select 
levels. Cheap Estimation

Expensive Calculation



Cloud Fraction Calculation with MKL_VML Functions

Copy values into 
contiguous memory

Calculate quickly 
with vcdfnorm()

“Unpack” results 
with vdunpackm()

Use fast estimation 
where possible

Cheap Estimation

Expensive Calculation

The improvement in performance with this method depends on the number of grids levels requiring an 
expensive calculation, due to the extra packing step adding overhead.



MKL_VML Overhead Diminishes Quickly

The MKL_VML special function method 
performs better once more than 5 grid levels 
require an expensive calculation.

The number of number vertical levels 
requiring an expensive calculation is almost 
always great enough to make this 
refactoring improve computational 
efficiency.



The Mixing Length Calculation is not Vectorizable
CLUBB contains a calculation to estimate the mixing length between vertical levels.

This is done by modeling a ‘parcel’ starting at each grid level, then determining how far that parcel 
may move by simulating the change in its turbulent kinetic energy (TKE). 

The change in the TKE for a specific parcel at level n+1 depends on its change at level n.

The calculation for a parcel ends once TKE=0.

Due to the uncertain stopping condition and data dependency, the calculation cannot be fully 
vectorized. 



Visualization of the Mixing Length Calculation
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Parcels starting at each nz are tracked up. 
These calculations have dependencies and 
can’t vectorize.
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Vectorizing each calculation for 
each parcel is possible, but results 
in many extra calculations, 
ultimately degrading performance.

... ...

Necessary

Unnecessary



Non-vectorizable Calculations May be Partially 
Vectorizable

Fully vectorizing this calculation increases cost due 
to unnecessary calculations.

The first calculation of each parcel is always
necessary.

Vectorizing the first calculations for each parcel 
reduces cost.
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This Reduces the Cost of The Mixing Length 
Calculation in CLUBB by ~50%
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Vectorized

Non-vectorized

This is works because not all parcels 
rise the same amount.

All calculations are necessary with 
this scheme. 

There are less scalar instructions and 
more vectorized instructions.



Lapack Source is More Efficient Than the MKL 
Library Implementation

CLUBB uses Lapack routines to solve large arrays.

The accepted approach is to use the well known 
Lapack methods.

There are two options; use Intel’s MKL Lapack library 
or compile Lapack from source.

Source Lapack is faster on all systems, regardless of 
compiler options.



Small Changes Have Large Impacts
All the refactorings discussed here have been implemented in CLUBB.

Most microarchitectural optimizations do not produce bit-for-bit identical results, but are usually 
equivalent mathematically. 

Over the past year, the cost of CLUBB is roughly 25% of what it used to be.


