Porting the RTE+RRTMGP radiative

transfer package for next-generation
supercomputers

Approved for public release

—
\\ EXASCHEE
) COMPUTING
\ PHOYEGHL
S

Benjamin R. Hillman (SNL), Matthew Norman (ORNL), Robert Pincus (CU)

%

LA\ [=97 % Office of
i VA'/.:,M ENERGY Science

Two paths toward a DOE global cloud-permitting model

« Simple Cloud-Resolving E3SM Atmosphere
Model (SCREAM)

— Rewrite our existing atmosphere in C++/kokkos for
performance portable GPU support with simplified
physics

— Scale up to 3km resolution
— Target simulations in 2021

« E3SM using the Multi-scale Modeling
Framework (E3SM-MMF)

— Multiscale modeling approach,
“superparameterization”

— Cloud resolving convection
— Very high computational intensity — ideal for GPUs
— Fortran with OpenACC for GPU support

E3SM-MMF Highlights

o Complete port of the CRM superparameterization to GPUs
— refactored 30K lines of code to enable openACC acceleration
— represents about 50% of the cost of the model
— Port of remaining 40% (RRTMGP package) recently completed

 Summit Early Science Simulation
— 1024 Summit nodes, running at 0.62 SYPD
— 6 year simulation, 300K node-hours

— Running a weather resolving global model (25km) with a cloud resolving 2D CRM (1km
superparameterization)

e Gordon Bell Submission SC2019
— 4600 Summit nodes, ~5.4PF
— 1.8 SYPD with 2km resolution
— 0.22 SYPD at 500m resolution

Radiative transfer cost

« Radiative transfer is
expensive: ~1/3 the cost of the
atmospheric physics

« CRM has already been ported
to GPU on Summit: ~15x
speed-up

 This talk: efforts to port the
radiative transfer package to
GPU

other

2.3%

radiation

33.3%

Relative cost of physics
packages on Intel Sandy Bridge

crm

64.4%

Radiative transfer package: RTE+RRTMGP

* Rewrite of popular RRTMG

A Implementation: levels of abstraction
radiation package

« Expose parallelism Model interface layer (translate model

_ data types to RTE+RRTMGP data types)
 Modern software practices

\ 4

RTE+RRTMGP user interface layer:
Goal: port kernels for modern Fortran (classes)

performance portability, leaving
interface largely untouched

\ Compute kernels: array-based

Porting RTE+RRTMGP using OpenACC

o Goal: RTE+RRTMGP fully running on Summit GPU

o Steps:
— Expose parallelism
— Wrap with OpenACC directives without explicit data management
— Compile with ptxinfo flag to highlight generation of implicit data copying code
— Add explicit data management to directives

Porting: example
Tightly-nested loops (expose parallelism)

+ '$acc enter data copyin{spectral_flux_dn, spectral_flux_up) create(broadband_flux_net)

'$ace parallel Lloop gang vector collapse(2)
de ilev = 1, nlew
do icel = 1, neol
broadband_flux_net{icol,ilev) = @

1¢ace parallel leop gang wector collapse(Z)
do ilev = 1, nlew
do icol = 1, ncol
broadband_f Llux_net(icol,ilev) = 8
end do

end do

end do
end do

'$acc parallel leop gang vector collapse(3)
de ilev = 1, nlew
do icol = 1, necol
do igpt = 1, ngpt
tmp = spectral_flux_dn{icol, ilev, igpt) - spectral_flux_wp(icol, ilev, igpt)
'$ace atomie update
broadband_flux_neti{icol,ilev) = broadband_flux_net(icel,ilev) + tmp

1$ace parallel loop gang vector collapse(3)
do ilev = 1, nlew
do icol = 1, ncol
do igpt = 1, ngpt
tmp = spectral_flux_dn{icol, ilev, igpt) - spectral_flux_upf{icol, ilev,
'$ace atomiec update
broadoand_flux_ret{iecol, ilev) = broadband_flux_netiicel,ilev) + tmp

end do end da
end do end do
end do end da

l3acc exit data copyout{broadband_flux_net) delete{spectral_flux_dn, spectral_flux_up)

Structured data statements
keep data on the device

/-;:\
\ EXASCALE
E ()P COMPUTING
PROJECT
\C...

Testing

 How do we know we have the right answer (and didn’t screw anything up)?

* Need to test after each code addition!
— Rapid, easy to launch regression tests

» Testing framework based on RTE+RRTMGP RFMIP example code (provided in RTE+RRTMGP Git
repo)

— End-to-end, stand-alone test
— Code: reads in example atmosphere data, computes radiative fluxes due to gaseous absorption
— Test: compare outputs from a test run with outputs from a baseline (before the code modification)

— Challenge: answers are not bit-for-bit due to floating point differences arising from atomic updates on the
GPU (cannot guarantee order of updates)

Testing: example

Diffs between CPU and reference:

Variable rlu: No diffs

Variable rld differs (max abs difference: 3.814697e-06; max
Variable rsu differs (max abs difference: .051758e-05; max
Variable rsd differs (max abs difference: 6.103516e-05; max

w

Diffs between GPU and reference:

Variable rlu: No diffs

Variable rld differs (max abs difference: 1.490116e-08; max
Variable rsu differs (max abs difference: .051758e-05; max
Variable rsd differs (max abs difference: 6.103516e-05; max

Diffs between CPU and GPU.:

Variable rlu: No diffs

Variable rld differs (max abs difference: 3.814697e-06; max
Variable rsu differs (max abs difference: .051758e-05; max
Variable rsd differs (max abs difference: 3.051758e-05; max

w

w

Subijectively, differences order le-5 are

o N
\ EXASCALE
E (} P COMPUTING
\C PROJECT

frac. difference:
frac. difference:
frac. difference:

frac. difference:
frac. difference:
frac. difference:

frac. difference:
frac. difference:
frac. difference:

“tolerable”

|_\

'_\

.178709e-05%)
.185221e-05%)
.0870660e-05%)

.173428e-05%)
.184619e-05%)
.087066e-05%)

.178709e-05%)
.185221e-05%)
.782132e-06%)

When things go bad...

call zero_array({block_size, def_tsi) call zero_array(block_size, def_tsi)
'sacc parallel loop collapse(2) copy{def_tsi) copyin(toa_flux) Isacc parallel loop collapse(2) copy({def_tsi) copyin{toa_flux)
do igpt = 1, ngpt do igpt = 1, ngpt
do icol = 1, block _size do icol = 1, block_size
!Sacc atomic update !Isacc atomic update
def_tsi{icol) = def_tsi(icol) + toa_flux(icol, igpt) def_tsi{icol) = def_tsi(icol) + toa_flux(icol, igpt)
end do end do
end do end do

Missing atomic update in reduction
operation leads to wrong answers!

Variable rlu: No diffs

Variable rld differs (max abs difference: 490116e-08; max frac. difference: 1.173428e-05%)
Variable rsu differs (max abs difference: 4.540662e+06; max frac. difference: 1.999758e+02%)
Variable rsd differs {(max abs difference: 2.117698e+87; max frac. difference: 1.999758e+02%)

o \
\ EXASCALE
E (l)P COMPUTING
PROJECT
\ —

Debugging tools

e Cuda-memcheck
 Valgrind (on CPU)
« Bounds checking (on CPU)

o Simplifying data movement

Profiling tools

« PGI_ACC_TIME=1: quick timing info for compute vs data movement

fautofs/nccs=svml_homel/brhillman/codes/rte-rrimgp/branches/master/build/. . /rte/kernels-openacc/mo_rte_solver_kernels.F9@
lw_source_noscat NVIDIA devicenum=@
time{us): 18,078
495: compute region reached 1 time
495: kernel launched 1 time
grid: [65535] block: [128]
device time{us): total=10,878 max=10,0878 min=10,078 avg=1@,073
elapsed time{us): total=1@,113 max=10,113 min=10,113 avg=10,113
495: data region reached 2 times

 NVPROF: visual representation of profiling data
— Run code on compute node, save nvprof output
— View using nvvp
— Useful for identifying bottlenecks and excessive data movement

o \
\ EXASCALE
E (} P COMPUTING
\C PROJECT

PGI_ACC_TIME=1 example

Jautofs/nccs—svml_homel/brhillman/codes/rte-rrimgp/branches/master/examples/rfmip—clear-sky/rrtmgp_rfmip_Llw.Fo@

rrtmgp_rfmip_lw NVIDIA devicenum=@

time{us): 131
228: data region reached 1 time
228: data copyin transfers: 1
device time{us): total=2@ max=28 min=20 avg=20
229: data region reached 1 time
229: data copyin transfers: 1
device time{us): total=13 max=13 min=13 awvg=13
23@: data region reached 1 time

P

Q@

23@: data copyin transfers: 4
device time{us): total=32 max=B min=8 awvg=8
253 compute region reached 1 time
253: kernel launched 1 time
grid: [225] block: [128]
device time{us): total=14 max=14 min=14 avg=14
elapsed time{us): total=159 max=159 min=159 avg=159
253: data region reached 4 times
253: data copyin transfers: 1
device time{us): total=9 max=9 min=9 avg=9
3@1: data region reached 1 time
382: data region reached 1 time
382: data copyin transfers: 1
device time{us): total=11 max=11 min=11 awvg=11
3@3: data region reached 1 time
383: data copyin transfers: 4
device time(us): total=32 max=8 min=8 avg=8
3@4: data region reached 1 time

/-;;‘\ \
EXASCARALE
= (C\)F’ expscoLe
PROJECT
_

This is a high-level routine doing
a lot of data movement

NVPROF example

= Process "rrtmgp-data-sw-g2...
[=I Thread 28200480

~ OpenACC

- Driver API
L Profiling Overhead
[=] [0] Tesla V100-5XM2-16GB
[=| Context 1 (CUDA)
= 5F MemCpy (HtoD)
= 5F MemCpy (DtoH)

=l Compute

cuDevicePrimaryCtxRetain

I N | 1111 O

custr.. . J(IIRIARAIAAOAY |

cuStreamSynchronize

EECOPIEEE Il I I—

| interpolation_93_gpu

After explicit data movement: much less device to host transfers

\

[=I Process "rrtmgp-data-sw-g2...

[=| Thread 28200480
- OpenACC

- Driver APl
- Profiling Overhead
[=I [0] Tesla V100-SXM2-16GB
[=| Context 1 (CUDA)
L 5F MemCpy (HtoD)
L 5F MemCpy (DtoH)

=] Compute

f-;:\
\ EXASCALE
E ()P COMPUTING
PROJECT
\\C...

cuDevicePrimaryCtxRetain - I|

-I l acc_compute_construct@mo_gas_optics_kernels.F9... dacc_c... _I
||| |||| acc_wait@mo_gas_optics_kernels.Fo0:93 ||||| --"

I

cuEitreams'_-,rruc}'|ror|ize

[| I |
| L !
[interpolation 83 gpu | g | /N | |

I

Future directions: transition to OpenMP Offload, and managed
memory

* For enhanced portability, we are creating an OpenMP 4.5+ version of the code
— OpenMP 4.5+ includes a kernel offload for accelerators
— OpenMP4.5 and OpenACC have a nearly 1:1 correspondence
e I$acc copyin() --> !$omp map(to:)
* I$acc update host() --> !$omp target update(from:)
o 1$acc parallel loop --> !'$omp target teams distribute parallel for

— Deep copy issues get a little more hairy, but we plan to sidestep that

* We plan to use managed memory
— Automatically pages data to/from GPU (no more data statements!)
— -ta=nvidia,managed for PGI for now (currently there are bugs, though)
— We will replace “allocate()” with custom cudaMallocManaged() routine using the LLNL Umpire pool allocator

https://github.com/LLNL/Umpire

Summary and challenges

« RTE+RRTMGP radiative transfer code ported to GPU using OpenACC directives

 The need to minimize data movement between device and host requires adding directives pretty
high up in the code — impossible to confine to kernels

* A number of compiler bug work-arounds needed

* Next step: evaluating performance in the full model

Extra slides

Context: Developing a cloud-permitting climate model for DOE
exascale achitectures

How do we parameterize this sub-grid variability?

Radiative transfer package: RTE+RRTMGP

e Separation of concerns

4 N 2

RTE: solvers

RRTMGP

* Optical properties

« Source functions

« Spectral discretization:

correlated k-distribution

* One-dimensional plane-

parallel RT equations
Absorption/emission or
two-stream

Adding for transport
Extensible to multi-stream
methods

