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DEEP LEARNING PROJECTS 
IN WEATHER, CLIMATE AND SPACE
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AI CAN DO IMPRESSIVE THINGS

DEFEAT WORLD CHAMPION STRATEGISTS OPERATE VEHICLES AUTONOMOUSLY

COMMUNICATE IN NATURAL LANGUAGE GENERATE ORIGINAL CONTENT
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DEEP LEARNING BUILDS FUNCTIONS FROM DATA
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Supervised
Deep 

Learning

Find 𝒇, given 𝒙 and 𝒚

𝒙 𝒚

IT’S A GENERALIZATION OF CURVE FITTING
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High dimensional x,y
Hierarchical
Millions of parameters

Supervised
Deep 

Learning

Find 𝒇, given 𝒙 and 𝒚

𝒙 𝒚

CURVE FITTING IN VERY HIGH DIMENSIONS
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IT’S A NEW TOOL FOR SOFTWARE DEVELOPMENT

TEMP, PRESSURE, MOISTURE

PROBABILITY OF RAIN

FUNCTION 1

FUNCTION 2

FUNCTION 3

FUNCTION 5

FUNCTION 4

Function1(T,P,Q)

return y

HAND-WRITTEN FUNCTION

Convert expert 
knowledge into a function

LEARNED FUNCTION

Reverse-engineer a function 
from inputs / outputs

Function1(T,P,Q)

return y

Function1(T,P,Q)

update_mass()

update_momentum()

update_energy()

do_macrophysics()

do_microphysics()

y = get_precipitation()

return y

Function1(T,P,Q)

A = relu( w1 * [T,P,Q] + b1)

B = relu( w2 * A       + b2)

C = relu( w3 * B       + b3)

D = relu( w4 * C       + b4)

E = relu( w5 * D       + b5)

y = sigmoid(w6 * E     + b6)

return y
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LEARNED FUNCTIONS ARE GPU ACCELERATED

DATA GPU ACCELERATED
FUNCTIONS
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MAKES EFFECTIVE USE OF NVIDIA GPUS

Libraries OPEN-ACC CUDA RAPIDS ML
DEEP 

LEARNING
Libraries OPEN-ACC CUDA RAPIDS ML

DEEP 

LEARNING
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WE CAN ENHANCE EXISTING APPLICATIONS
Improve all stages of numerical weather prediction

PARAMETRIZATIONDYNAMICSCOLLECTION ASSIMILATION

3DVAR

THINNING COMMUNICATION
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WE CAN BUILD NEW CAPABILITIES

REAL-TIME 
WEATHER DETECTION

ENVIRONMENTAL 
MONITORING

DISASTER PLANNING,
SEARCH AND RESCUE

NEAR-EARTH OBJECT 
DETECTION

ACCELERATED 
DATA ASSIMILATION

AUTONOMOUS SENSORS 
AND ROVERS

DATA ENHANCEMENT 
AND REPAIR

FASTER / MORE ACCURATE 
PARAMETERIZATIONS
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EXAMPLE APPLICATIONS:
FEATURE DETECTION
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TYPHOON SOUDELOR

GUST: 180 MPH CAT: 5
FEATURE 2

Feature 3

REAL-TIME 
WEATHER DETECTION

NOAA ESRL & NVIDIA

An interesting application of AI is 

the real time detection of features 

of interests, such as tropical 

storms, hurricanes, tornados, 

atmospheric rivers, volcanic 

eruptions,  and more. Using AI we 

can rapidly process the data 

streaming in from multiple 

satellites around the globe, 

enabling us to examine every pixel 

in detail for important information.
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FEATURES OF 
INTEREST

• Tropical Cyclones

• Extra-tropical Cyclones

• Atmospheric Rivers

• Storm Fronts

• Tornados

• Convection Initiation

• Cyclogenesis

• Wildfires

• Blocking Highs

• Volcanic Eruptions

• Tsunamis
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BUILD TROPICAL STORM DATASET FROM IBTRACS AND GFS
Extract positive and negative examples for supervised learning

POSITIVE 

NEGATIVE 
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USE A U-NET MODEL FOR SEGEMENTATION
Multi-scale Convolutional Neural Net for Image Segmentation

GFS WATER VAPOR FIELD TARGET SEMENTATION
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RESULTS: TROPICAL STORMS

Ground Truth
Prediction

NOAA ESRL

Mark Govett

Jebb Stewart

Christina Bonfonti

NVIDIA

David Hall

SOURCE

GFS Water Vapor

TARGET

IBTRACS Storm Locations
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RESULTS:
TROPICAL STORMS
GOES SATELLITE OBSERVATIONS
UPPER-TROPOSPHERIC

NOAA ESRL

Mark Govett

Jebb Stewart

Christina Bonfonti

NVIDIA

David Hall

SOURCE

GOES 12-15 Upper Tropospheric 

Water Vapor Band

TARGET

IBTRACS Storm Locations

PREDICTIONS

GROUND TRUTH
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RESULTS: CONVECTION INITIATION
GROUND TRUTH PREDICTION

NOAA ESRL

Mark Govett

Jebb Stewart

Christina Bonfonti

NVIDIA

David Hall

SOURCE

Himawari8 band 8,13

TARGET

Composite Radar 

Reflectivity DBZ>35
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ACTIVE REGIONS

SPACE-WEATHER
DETECTION

NASA GODDARD 

ALTAMIRA & NVIDIA

Feature detection can be applied 

to detect features on the Sun and 

other astrophysical bodies. In 

particular, we can apply AI to 

solar flares and coronal mass 

ejections in order to predict the 

influx of highly charged particles 

on Earth’s atmosphere.
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SOLAR DYNAMICS
OBSERVATORY

• 1.5 TB Data / Day

• Operational Since 2010

• AIA: 10 Wavelength Channels

• 150M Images To Be Labelled

• 30k Images Labelled so far

• Coronal Holes

• Active Regions

• Sunspots

• Solar Flares

• Coronal Mass Ejections

• Filaments

SDO

AIA
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RESULTS:
CORONAL HOLES

Ground Truth
Prob of Detection

NASA Goddard

Michale Kirk, Barbara Thompson, 

Jack Ireland, Raphael Attie

NVIDIA

David Hall

Altamira

Matt Penn, James Stockton, 

SOURCE

Solar Dynamics Observatory

AIA Imager 

TARGET

Hand-crafted detection algorithm
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SUNSPOT PREDICTIONS

Predicts all 0s unless special care is taken

• Super-sample minority class 

• Under-sample majority class 

• Use focal loss

Select small crops from high-res imagery

Pos : crops w/large fraction sunspot pixels

Neg : randomly selected crops

Train conv net on small crops only

Predict on full-resolution images

Highly imbalanced dataset. Needs special care.
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Ground Truth
Prob of Detection

RESULTS:
SUNSPOTS

NASA Goddard

Michale Kirk, Barbara Thompson, 

Jack Ireland, Raphael Attie

NVIDIA

David Hall

Altamira

Matt Penn, James Stockton, 

SOURCE

Solar Dynamics Observatory

AIA Imager 

TARGET

Hand-crafted detection algorithm
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Ground Truth
Prob of Detection

RESULTS:
ACTIVE REGIONS

NASA Goddard

Michale Kirk, Barbara Thompson, 

Jack Ireland, Raphael Attie

NVIDIA

David Hall

Altamira

Matt Penn, James Stockton, 

SOURCE

Solar Dynamics Observatory

AIA Imager 

TARGET

Hand-crafted detection algorithm
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EXAMPLE APPLICATIONS:
GENERATIVE MODELS
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CONDITIONAL GANS FOR
DATA ASSIMILATION

NVIDIA

In cases where a 1-1 map is not 

possible, we can employ conditional 

generative adversarial networks in order 

to generate a single, physically 

plausible state from a distribution of 

possible states. This prevents the 

dilution or blurring caused by under-

constrained output.
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FORWARD AND INVERSE OPERATOR APPROXIMATION

SATELLITE RADIANCES MODEL VARIABLES

NEURAL NETWORK
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RESULTS:
SATELLITE 
TO MODEL 
CONDITIONAL GAN

NVIDIA

David Hall

SOURCE

GOES-15 Band 3

GFS Water Vapor

TARGET

GFS Water Vapor

GOES-15 Band 3

INPUT: GOES-15 GENERATED TARGET: GFS

CONDITIONAL GAN

REGRESSION MODEL

INPUT: GOES-15 GENERATED TARGET: GFS
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“REGRESS THEN GAN”

TOY PROBLEM:
TRAINING A 2D
CONDITIONAL GAN

NVIDIA

David Hall

SOURCE

1d parametric coordinate

TARGET

Synthetic point distribution
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RESULTS: CGAN CLOUD GENERATION

SST

Ps

U10

V10

EIS

Shear

Omega

RH

NASA Goddard

Tianle Yuan

Hua Song

Victor Schmidt

Kris Sankaran

MILA

Yoshua Bengio

NVIDIA

David Hall

SOURCE

Hadcrut4, cmip, 20cr

TARGET

Hadcrut4, cmip, 20cr
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EXAMPLE APPLICATIONS:
DATA ENHANCEMENT
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ENHANCEMENT AND REPAIR
OF SATELLITE & MODEL DATA

NOAA STAR

Freie Universitat Berlin

NVIDIA

Using NVIDIA’s super-slow motion and 

inpainting techniques, we can repair 

missing or damaged pixels in satellite 

and model data, or create high quality 

interpolations of the data in space and 

time.
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NVIDIA SUPER SLOW-MOTION
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USE DEEP LEARNING TO PREDICT OPTICAL FLOW

0

20m/s2D OPTICAL FLOW U-COMPONENT OF WIND
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RESULTS:
SLOW MOTION 
ADVECTION

ORIGINAL

INTERPOLATED (10x)

NVIDIA

David Hall

SOURCE

GOES-15 Band 3

TARGET

GFS u,v wind fields
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IN-PAINTING
Use partial-convolutions to fill in missing data
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RESULTS: INPAINTING MISSING HADCRUT4 CLIMATE DATA

FREI UNIVERSITAT BERLIN

Christopher Kadow

NVIDIA

David Hall

SOURCE

Hadcrut4, cmip, 20cr

TARGET

Hadcrut4, cmip, 20cr
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INPAINTING MISSING GOES-17 OBSERVATIONS

NOAA STAR

E. Maddy(RTI)

N. Shahroudi (RTI)

R. Hoffman(UMD)

T. Connor (AER)

S. Upton(AER)

J. Ten Hoeve (NWS)

SOURCE

GOES-17

TARGET

GOES-17
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EXAMPLE APPLICATIONS:
TIME-SERIES PREDICTION
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STREAMFLOW PREDICTION
UNDER CLIMATE CHANGE

GOES-16 CIRA GEO COLOR / GOES-15 RED BAND

Climate models are able to predict 

changes in precipitation, but how 

will this effect streamflow rates? 

To answer this question one can 

built a detailed physical model, or 

train a neural network to predict 

time series data. In this case, we 

find a simple network performs 

just as well.

UC Davis, NVIDIA
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STREAMFLOW FROM PRECIPITATION
Predicting streamflow probabilities under climate change

UC Davis
Paul Ullrich, Lele Shu, Shiheng Duan

NVIDIA
David Hall

Source
PRISM 

Target
Stream Gauge Data

R2 = 0.85, NSE=0.70

INPUT: PRECIPITATION 

OUTPUT: STREAMFLOW 
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SUMMARY

• SUPERVISED DEEP LEARNING IS POWERFUL, BUT NOT MYSTERIOUS

• A GENERALIZATION OF CURVE FITTING, IN HIGH DIMENSIONS

• A DIFFERENT WAY TO BUILD SOFTWARE (REVERSE-ENGINEERINGING FROM DATA)

• A GREAT WAY TO TAKE ADVANTAGE OF YOUR GPUS

• CAN DO SOME PRETTY AMAZING THINGS. (CAN’T BE DONE IN ANY OTHER WAY.)

• WILL BECOME A STANDARD PART OF THE NWP / CLIMATE TOOLBOX.

dhall@nvidia.com
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SUMMARY

dhall@nvidia.com

AI

CONVOLUTIONS IN TIME FOR 

STREAMFLOW PREDICTION

UNETS FOR WEATHER AND 

SPACE-WEATHER DETECTION

SLOW MOTION INTERPOLATION 

VIA OPTICAL FLOW PREDICTION

INPAINTING FOR IMPUTING MISSING 

HADCRUT4 AND GOES-17 DATA

CONDITIONAL GANS FOR

DATA ASSIMILATION AND 

CLOUD GENERATION
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INPUT: GOES-15 GENERATED TARGET: GFS

RESULTS:
SATELLITE TO 
MODEL 
CONDITIONAL GAN

INVERSE OPERATOR

FORWARD OPERATOR
INPUT: GFS GENERATED TARGET: GOES-15

NVIDIA

David Hall

SOURCE

GOES-15 Band 3

GFS Water Vapor

TARGET

GFS Water Vapor

GOES-15 Band 3


