
This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Incorporating Python Machine Learning
Parameterizations into Fortran Models: A Tale of Two

Frameworks

25 September 2019

David John Gagne
National Center for Atmospheric Research

Surface Layer Collaborators: Tyler McCandless, Branko Kosovic, Amy
DeCastro, Thomas Brummet, Sue Ellen Haupt, Rich Loft, Bai Yang

Microphysics Collaborators: Andrew Gettelman, Jack Chen, Daniel
Rothenberg

Motivation

It was the best of times. It was the worst of times.

• Numerical Weather Prediction model skill

continues to increase

• Decision makers trust meteorologists more

than ever

• Both serial and parallel processing limits are limiting

the further scalability of existing model codes

• Weather and climate models will need a new design

paradigm to realize higher resolution and complexity

Contact: dgagne@ucar.edu, @DJGagneDos

Goals

• Machine learning offers a computationally efficient,
expressive, and scalable framework for representing
complex physical processes in numerical models

• Problem: machine learning libraries are written in
Python or C++, but numerical models are generally
written in Fortran

• Goal: Evaluate how machine learning models
perform physically and computationally at
representing subgrid physical processes with two
frameworks

• Surface Layer: machine learning parameterization
trained from observations to minimize assumptions
required by Monin-Obukhov similarity theory

• Microphysics: machine learning emulator trained on
simulation data from a bin microphysics process is
inserted into bulk microphysics scheme

https://www.pinterest.com/pin/260012578456645879/?lp=true

Esteemed parameterization with a complex past

Neural network emulator good enough to fool the guards?

Contact: dgagne@ucar.edu, @DJGagneDos

https://www.pinterest.com/pin/260012578456645879/?lp=true

Motivation: Observed and Modeled Surface Layer

Observed Surface Layer Model Surface Layer

Lowest Model

Level

Surface Layer
Parameterization

Land Surface Model

PBL

Scheme

Temperature, wind,

humidity

Temperature, wind,

humidity, pressure

Shortwave and longwave

radiation

Soil temperature and moisture

Sensible and latent heat fluxes

SH LH

• Transfer of energy

between the land surface

and atmosphere is driven

by radiation and sensible

and latent heat fluxes

• Sensible and latent heat

fluxes occur through

unresolved turbulent

eddies

• Processes currently

represented in all

numerical models through

surface layer

parameterization and land

surface model

• Parameterization use

assumptions of Monin-

Obukhov similarity theory

Contact: dgagne@ucar.edu, @DJGagneDos

Motivation: Surface Layer Methods

• MO similarity theory depends on empirical “stability
functions” fit to data from short field campaigns

• Field campaign data likely does not capture the full
range of possible flux-gradient relationships that can
occur

• Therefore, we use two sites with multiyear
observational records for both weather and flux data to
train machine learning models

• Fit random forests and neural networks to each site to
predict friction velocity and scale terms to calculate
sensible heat flux and latent heat flux

• Avoiding explicit calculation of stability functions

Cabauw, Netherlands

KNMI Mast

213 m tower

Data from 2003-2017

Scoville, Idaho, USA

FDR Tower

Flux tower

Data from 2015-2017

Contact: dgagne@ucar.edu, @DJGagneDos

Input and Output Variables

Input Variables Heights (Idaho/Cabauw)

Potential Temperature Gradient (K) Skin to 10 m, 15 m/20 m

Mixing Ratio Gradient (g kg-1) Skin to 10 m, 20 m

Wind Speed (m s-1) 10 m, 15 m/20 m

Bulk Richardson number 10 m- 0 m

Moisture Availability (%) 5 cm/3 cm

Solar Zenith Angle (degrees) 0 m

Output equations

Predictands

u*=Friction velocity

θ*=Temperature scale

q*=Moisture scale

6Contact: dgagne@ucar.edu, @DJGagneDos

ML Procedure
1. Train ML models on observations

2. Plug in ML models to WRF in surface layer parameterization

3. Surface layer parameterization derives necessary outputs from ML

predictions

Random Forest and Neural Network

Images from http://cs231n.github.io/convolutional-networks/

Contact: dgagne@ucar.edu, @DJGagneDos

Key hyperparameter: max_leaf_nodes=1024

Offline Results: Temperature and Moisture Scale

Contact: dgagne@ucar.edu, @DJGagneDos

Cross-Testing ML Models

9

R2 MAE

Idaho Test Dataset

Friction

Velocity

Temperature

Scale

Moisture

Scale

Friction

Velocity

Temperature

Scale

Moisture

Scale

MO Similarity 0.85 0.42 0.077 0.203

RF Trained on Idaho 0.91 0.80 0.41 0.047 0.079 0.023

RF Trained on Cabauw 0.88 0.76 0.22 0.094 0.139 0.284

R2 MAE

Cabauw Test Dataset

Friction

Velocity

Temperature

Scale

Moisture

Scale

Friction

Velocity

Temperature

Scale

Moisture

Scale

MO Similarity 0.90 0.61 0.18 0.115 0.062 0.135

RF Trained on Cabauw 0.93 0.82 0.73 0.031 0.030 0.055

RF Trained on Idaho 0.90 0.77 0.49 0.074 0.049 0.112

Results Courtesy Tyler McCandless

Contact: dgagne@ucar.edu, @DJGagneDos

Random Forest Incorporation into WRF

• Save scikit-learn decision trees from random forest
to csv files

• Read csv files into Fortran array of decision tree
derived types

• Random forest surface layer parameterization
– Calculate derived input variables for ML models

– Feed vectors of inputs to random forests for friction
velocity, temperature scale, moisture scale

– Calculate fluxes, exchange coefficients and surface
variables

• Test with WRF Single Column Model on idealized
case study
– Using GABLS II constant forcing

– YSU Boundary Layer

– Slab Land Surface Model

type decision_tree

integer :: nodes

integer, allocatable :: node(:)

integer, allocatable :: feature(:)

real(kind=8), allocatable :: threshold(:)

real(kind=8), allocatable :: tvalue(:)

integer, allocatable :: children_left(:)

integer, allocatable :: children_right(:)

real(kind=8), allocatable :: impurity(:)

end type decision_tree

function decision_tree_predict(input_data_tree, tree) result(tree_prediction)

real(kind=8), intent(in) :: input_data_tree(:)

type(decision_tree), intent(in) :: tree

integer :: node

real(kind=8) :: tree_prediction

logical :: not_leaf

logical :: exceeds

node = 1

tree_prediction = -999

not_leaf = .TRUE.

do while (not_leaf)

if (tree%feature(node) == -2) then

tree_prediction = tree%tvalue(node)

not_leaf = .FALSE.

else

exceeds = input_data_tree(tree%feature(node) + 1) > tree%threshold(node)

if (exceeds) then

node = tree%children_right(node) + 1

else

node = tree%children_left(node) + 1

end if

end if

end do

end function decision_tree_predict

Contact: dgagne@ucar.edu, @DJGagneDos

CASES-II WRF Idealized Single Column Model Comparison

Contact: dgagne@ucar.edu, @DJGagneDos

WRF Idealized Single Column Model Comparison

Contact: dgagne@ucar.edu, @DJGagneDos

Surface Layer Takeaways

• Initial results appear promising
but require further tuning and
retraining to fix inconsistencies

• May need to ensure consistencies
among friction velocity,
temperature scale, and moisture
scale

• We may need to modify land
surface model and PBL scheme
because of their dependencies on
MO

Observed Surface Layer Model Surface Layer

Lowest Model

Level

Surface Layer
Parameterization

Land Surface Model

PBL

Scheme

Temperature, wind,

humidity

Temperature, wind,

humidity, pressure

Shortwave and longwave

radiation

Soil temperature and moisture

Sensible and latent heat fluxes

SH LH

Contact: dgagne@ucar.edu, @DJGagneDos

Motivation

Precipitation formation is a critical uncertainty for weather

and climate models.

Different sizes of drops interact to evolve from small cloud

drops to large precipitation drops.

Detailed codes (right) are too expensive for large scale

models, so empirical approaches are used.

Let’s emulate one (or more)

Goal: put a detailed treatment into a global model and

emulate it using ML techniques.

Good test of ML approaches: can they reproduce a

complex process, but with simple inputs/outputs?

Superdroplet model output animation

Credit: Daniel Rothenberg

Contact: dgagne@ucar.edu, @DJGagneDos

Bulk vs. Bin Microphysics

Bulk scheme (MG2 in CAM6):
Calculate warm rain formation processes
with a semi-empirical particle size
distribution (PSD) based on exponential fit
to LES microphysics runs.

Bin Scheme (Tel Aviv University (TAU) in
CAM6):
Divide particle sizes into bins and calculate
evolution of each bin separately. Better
representation of interactions but much
more computationally expensive.

Contact: dgagne@ucar.edu, @DJGagneDos

Cloud to Rain Processes

Cloud droplets grow into rain droplets

through 3 processes:

Autoconversion: cloud droplets collide

in a chain reaction to form rain drops

dqc/dt < 0, dqr/dt > 0

dNc/dt < 0, dNr/dt > 0

Rain Accretion: rain drops collide with

cloud droplets

dqc/dt < 0, dqr/dt > 0

dNc/dt < 0, dNr/dt = 0

Self-Collection: rain drops collide with

other raindrops

dqc/dt = 0, dqr/dt = 0

dNc/dt = 0, dNr/dt < 0
d: rain drop

c: cloud droplet

CCN: cloud condensation

nuclei

Contact: dgagne@ucar.edu, @DJGagneDos

Microphysics Emulator Procedure

1. Run CAM6 for 2 years with fixed forcing from other CESM components

2. Output global microphysics input and output fields every 25 hours

3. Filter and subsample data to find grid points with realistic amounts of

cloud water

Inputs

Cloud water mixing ratio (qc)

Cloud water number concentration (Nc)

Rain water mixing ratio (qr)

Rain water number concentration (Nr)

Air density

Cloud Liquid Slope Parameter

Rain Water Slope Parameter

Rain Water Intercept Parameter

Cloud Fraction

Precipitation Fraction

Spectra shape for cloud liquid water

dqr/dt >

0?

dqr/dt

0

dNc/dt

< 0?

dNr/dt +,-

, or 0? 0

+dNr/dt

-dNr/dt

dqc/dt=-

dqr/dt

17

dNc/dt

< 0?

0

Contact: dgagne@ucar.edu, @DJGagneDos

Neural Network Settings

• 3 classifier networks, 4 regression networks

• 82,327 weights total (~16 jellyfish brains)

• Dense Neural Network Hyperparameters
– 4 layers

– 60 neurons per hidden layer

– 11,761 total weights

– Rectified Linear Unit (ReLU) activation functions

– Batch Size: 4096 examples

– Learning Rate: 1.0e-3

– L2 Norm Weight: 1.0e-4

– Training Period: 10 epochs

– Loss function: Mean squared error (regression), cross-
entropy (class)

Artistic rendering of neural

network interface

Image from J. Fardell, 2001: Jeremiah Jellyfish Flies High

Contact: dgagne@ucar.edu, @DJGagneDos

Classifier Results

TAU QR 1 TAU QR 0 Total

NN QR 1 41.7% 0.7% 42.4%

NN QR 0 0.8% 56.8% 57.6%

Total 42.5% 57.5% 98.4%

TAU NC 1 TAU NC 0 Total

NN NC 1 52.9% 0.5% 53.4%

NN NC 0 0.2% 46.3% 46.5%

Total 53.1% 46.8% 99.3%

TAU NR -1 TAU NC 0 TAU NR 1 Total

NN NR -1 35% 0.0% 0.4% 35.4%

NN NR 0 0.1% 43.1% 0.3% 43.5%

NN NR 1 0.2% 0.5% 20.4% 21.1%

Total 35.3% 43.6% 21.1% 98.5%

Contact: dgagne@ucar.edu, @DJGagneDos

Microphysics 2D Histogram Results

Output R2 MAE Hellinger

dqr/dt 0.991 0.095 4.53e-4

dnc/dt 0.995 0.112 1.49e-3

dnr/dt < 0 0.995 0.081 6.04e-4

dnr/dt > 0 0.978 0.178 1.18e-3

Contact: dgagne@ucar.edu, @DJGagneDos

ML Integration with Numerical Models

• Problem: Atmospheric models are written in Fortran,
but the ML model codes are written in Python

• Solution: Fortran neural network inference subroutine

• Subroutine Contents
– Calculate derived input variables

– Feed inputs into ML models

– Calculate diagnostics from ML output

• Advantages
– No outside library dependencies

– ML models can be switched out easily when more data are
available

• Disadvantage
– More limited ML functionality/optimization compared with

community ML models

type Dense

integer :: input_size

integer :: output_size

real(kind=8), allocatable :: weights(:, :)

real(kind=8), allocatable :: bias(:)

character(len=10) :: activation

end type Dense

Contact: dgagne@ucar.edu, @DJGagneDos

CAM Run with Machine Learning Emulator

• ML runs at roughly

same speed as

CAM with MG2

• CAM with TAU is 3x

slower than CAM

with MG2

• CAM with ML

emulator and

training climate runs

for 9 years

• ML emulator and

+4C SST: 4.5 years

before blowup

• ML emulator and

preindustrial

aerosols: 18 months

before blowup

Contact: dgagne@ucar.edu, @DJGagneDos

CAM Run Distribution Comparisons

Contact: dgagne@ucar.edu, @DJGagneDos

Partial Dependence Plots

Temperature Dewpoint Pressure

280 10 986

280 14 1014

280 2 992

280 25 1025

280 6 950

1. Set all instances for one variable
in a dataset to a single value

Machine Learning
or Physical Model

2. Feed fixed data
through model

Mean
Prediction

3. Calculate mean
prediction for

fixed value

4. Repeat process for range of input values
Example: Temperature=[20, 22, ..., 40]

Goal: understand average sensitivities of input fields while accounting

for nonlinear interactions within model

Contact: dgagne@ucar.edu, @DJGagneDos

Microphysics Emulator Partial Dependence (ExpandedRange)

Contact: dgagne@ucar.edu, @DJGagneDos

Outside the range of the training data (red) the neural network extrapolates mostly linearly

Systematic Biases with Emulators

Possible that ML emulator has less variance than the input data.

General issue with many ML applications.

For a non-linear process, variability will yield a different average process rate than the mean…

dLWP

(process rate)

ML Emulator

State
Variability

Average of higher variability (Perfect

Model) has larger process rate

(dLWP/dT) than smoother Emulator,

hence more LWP in the mean.

Contact: dgagne@ucar.edu, @DJGagneDos

Python to Fortran Discussion

CFFI

(Noah Brenowitz* approach)

Fortran Inference Modules

(My Approach)

Fortran API to C++ Deep

Learning Library

Pros:

Call Python from Fortran

Passes data quickly

Don’t have to run ML models

on Fortran side

Potential for online training

Pros:

Train in Python; run in Fortran

Runs really fast

Supports dense neural

networks of arbitrary depth

Pros:

Can access networks of

arbitrary complexity

Potential for online training

Bypass Python bottleneck

Cons:

Requires running separate

Python runtime along with

Fortran model

Python side may be a

bottleneck for running at scale

Cons:

Does not support

convolutional neural networks

or more complex architectures

No online training

Cons:

Does not exist yet

Would require writing and

maintaining API to make all

library features accessible

from Fortran

*https://www.noahbrenowitz.com/post/calling-fortran-from-python/

https://www.noahbrenowitz.com/post/calling-fortran-from-python/

Summary

• The machine learning surface layer parameterization improves on Monin-Obukhov
similarity theory in the calculation of sensible and latent heat fluxes based on
comparisons with observations.

• The ML surface layer parameterization can recreate the diurnal cycle of the boundary
layer but currently struggles with the transition from stable to unstable conditions.

• The ML bin microphysics emulator accurately captures when the autoconversion
process is triggered and provides an unbiased estimate of the magnitudes of the
tendencies.

• The ML bin emulator CAM run reproduces a similar climate to the original run with the
bin scheme in place

Contact: dgagne@ucar.edu, @DJGagneDos

