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Talk Outline

• Update on the matrix-vector kernel (MA, GR)

• Implementation for two kernels of LFRic (MA, GR)

• OpenCL kernels on FPGAs (GR)

• Performance portability with PSyclone and OpenCL 
(SS, AP, RF)
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Horizon 2020 FETHPC-01-2016: 

Co-design of HPC systems and applications 
EuroExa started 1st Sep 2017, runs for 3½ years
16 Partners, 8 countries, €20M
Builds on previous projects, esp. ExaNoDe, ExaNeSt, EcoScale

Aim: design, build, test and evaluate an Exascale prototype  
Architecture based on ARM CPUs with FPGA accelerators
Three testbed systems: #3 will deliver 2.4 Pflop/s peak
Scalable to 400 Pflop/s at high Gflop/s/W
Low-power design goal to target realistic Exascale system
Architecture evolves in response to application requirements  

= co-design

Wide range of apps, incl. weather forecasting, lattice Boltzmann, multiphysics, astrophysics, 
astronomy data processing, quantum chemistry, life sciences and bioinformatics

Kick-off meeting 4th-5th Sep 2017, 

Barcelona 

@euroexa

euroexa.eu



LFRic Weather and Climate Model

Brand new weather and climate model: LFRic
named after Lewis Fry Richardson (1881-1953)

• Dynamics from the GungHo project 2011-2015

• Scalability – globally uniform grid (no poles)

• Speed – maintain performance at high & low 
resolution and for high & low core counts

• Accuracy – need to maintain standing of the model

• Separation of Concerns – PSyclone generated layer 
for  automated targeting of architectures

• Operational weather forecasts around 2022 –
anniversary of Richardson (1922)

Globally 

Uniform 

Next 

Generation

Highly 

Optimized

“Working together 

harmoniously”



Motivation

• Field Programmable Gate Array (FPGA) is “a matrix of 
configurable logic blocks connected via programmable 
interconnects”

• FPGAs offer large gains in performance/W and /$
• Natural route to reduced precision
• Major corporations are using FPGAs in datacentres for 

cloud services, analytics, communication, etc.
• Hardware traditionally led by Xilinx (ARM CPU + FPGA single chip)

• Intel’s acquisition of Altera led to Heterogeneous 
Architecture Research Platform (HARP) (also single chip)

• Predictions: up to 30% of datacenter servers will have 
FPGAs by 2020



Three Steps to (FPGA) 
Heaven

1. Compile C kernels using Vivado High Level 
Synthesis -> IP blocks 

2. Lay out the design with your IP blocks and built-in 
IP using Vivado Design Suite -> bitstream

3. Write code to drive the FPGA kernels from the 
CPU code (Fortran 2003)



FPGA kernels with Vivado HLS –
matrix-vector multiplication

Performance Estimate:

• Target 2ns clock: design 
validated at 2.89ns = 346 MHz

• 2334 cycles for 3840 flops = 1.65 
flops/cycle

• Overlapped dmul with dadd

• Starting code was 69841 cycles

Utilization Estimate:

• Try to maximize performance while 
minimizing utilization

• Shows percentage of chip ‘real-
estate being utilized



Vivado Design Suite with Twelve 
Matrix-Vector Blocks



ARM driver code

• Setup two devices /dev/uio0 and /dev/uio1 – two ports on the ZynQ IP block

• Use mmap to map the FPGA memory into user space

• Assign pointers for each data array to location in user space

• For each “chunk” of cells:

• Assign work to one of the matrix-vector blocks

• Copy input data into BRAM

• Set the control word “registers” for the block

• Start the block by setting AP_START

• Wait for block to finish by watching AP_IDLE (opportunity for overlap)

• Copy output data from BRAM

• In practice we fill the whole BRAM, then run all 12 matrix-vector blocks, then 
copy output data back and repeat

Maintain the LFRic “spirit”: 
Standard Fortran 2003 
using ISO C Interface



Why you should not throw 
up your hands in horror!

This is far too low-level for me! 

…. but ….

• The beauty of the PSyclone approach in LFRic means 
all this can be hidden from the scientist

• Programming models are developing, becoming easier 
to use, e.g. OpenCL with HLS

• We are demonstrating capability using low-level tools



LFRic Matrix-Vector Kernel -
performance

• Best performance 5.3 Gflop/s

• 510 Mflop/s per block => 1.53 
flops/cycle (93% of HLS estimate)

• Parallel efficiency at 12 IP blocks 87%

• Clock scaling 100 to 333 MHz is 94% 
efficient

• ARM Cortex A53 single core 177 
Mflop/s

• ARM quad-core with OpenMP 615 
Mflop/s approx.

• FPGA:ARM quad-core speed-up: 8.6x



LFRic Matrix-Vector Kernel -
critical performance factors

Clock speed

Number of matrix-
vector blocks

Performance of single 
matrix-vector block



LFRic Matrix-Vector Kernel -
performance comparison

Hardware Matrix-
vector 

performance 
(Gflop/s

Peak 
performance 

(Gflop/s)

Percentage 
peak

Price Power

ZCU102 FPGA 5.3 600 0.9% $ W

Intel Broadwell E5-
2650 v2 2.60GHz 
8 cores

9.86 332.8 3.0% $$$ WWW

• FPGA performance is 54% of Broadwell single socket

• Should be scaled by price & power



LFRic Matrix-Vector Kernel -
discussion

• Performance/price and performance/power
• “GPU vs FPGA Performance Comparison”, Berton White Paper, 2016

• GPU: 0.07-0.12 vs. FPGA: 0.23 €/Gflop/s/W
• GPU: 20 vs. FPGA: 70 Gflops/W
• FPGAs have a large benefit in power efficiency

• Matrix-vector (MVM) vs. matrix multiply (MXM)
• For large N, MVM asymptotically approaches 

computational intensity (CI) of 0.25 flops/byte
• MXM has a computational intensity of N/12, so even for 

small matrices (12x12) CI is one flop/byte
• Matrix-vector is much harder than matrix-multiply

Ashworth et al, “First steps in porting the LFRic Weather and Climate model 
to the FPGAs of the EuroExa architecture”, Scientific Programming, in press 2019



Implementation in LFRic –
intercepting LFRic kernels

• Simply intercept the single-cell kernel
• e.g. call opt_apply_variable_hx_code

• target options: Fortran, C, FPGA

• Or replace the loop over cells by a multi-cell call
• e.g. call multicell_apply_variable_hx_code (1, 

mesh%get_last_edge_cell(), …

• an obvious optimisation for many architectures



Implementation in LFRic –
multiple kernels

• Typical LFRic workload
Kernel 1 (e.g. apply_variable_hx_code)

Halo exchange for variable x1

Kernel 2 (e.g. matrix_vector_code)

Halo exchange for variable x2

• Implement multiple IP blocks in the Vivado design

• Communicate on-chip via BRAM memory

• Only halos sent between CPU & FPGA for MPI

• EuroExa partners working on FPGA-FPGA MPI comms

DONE

TBD



OpenCL on FPGAs

• OpenCL high-level benefits
• OpenCL’s execution and memory model is a close match for FPGAs

• High-level programming interface e.g. SDSoC, SDAccel

• Partial reconfiguration for dynamic management of kernels *

• Exploring design optimisation space
• OpenCL host parallelism through command-queues

• FPGA deployment options and kernel optimisations

• Context of MPI and threads
• EuroExa TestBed0 in Manchester: 8 x ZYNQ UltraScale+

* Pham et al, “ZUCL: A ZYNQ UltraScale+ Framework for OpenCL HLS Applications”, FSP Workshop 2018



• PSyclone aims to provide performance portability while 
maintaining a good separation of concerns between the 
science and the computational domains.

• New OpenCL back-end to target FPGAs from the same front-
end Fortran code.

PSyIR

Fortran

Code

OpenCL

Code

Fortran

Backend

Transforms

PSyIR

Transformations

OpenCL

Backend

LFRic 

Frontend

GOcean
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NEMO 

Frontend

Fortran

Code

Fortran

Code

Fortran

Code Other back-ends

PSyclone intermediate 
representation



• Hartree is using NemoLite2D (GOcean front-end) as 
initial example for the OpenCL back-end:

• Vertically averaged version of the dynamical free-surface 
part of NEMO. It uses a structured grid and the explicit 
Eulerian forward time stepping method.

• It captures the essence of a real application and it is 
relatively complex for an FPGA application, time 
stepping contains 11 kernels with a total of ~300 LOC.

• For now, the GOcean front-end is the only one 
supported by the OpenCL back-end.

PSyclone OpenCL testing 
with NemoLite2D



• OpenCL driver layer: host code controls execution of OpenCL kernels. 
PSyclone generates Fortran code that calls the OpenCL API using the 
interface provided by the FortCL library github.com/stfc/FortCL

• OpenCL Kernels: device code written in OpenCL. Using the PSyIR
language-independent representation of the kernels, PSyclone is able 
to generate an OpenCL version of each kernel

*Simplified subroutine

PSyclone OpenCL code 
generation

https://github.com/stfc/FortCL


Initial results on a Xilinx U200 FPGA PCIe card.

Resource Xilinx U200

LUTs (K) 892

Registers (K) 1831

BRAM (36 Kb 
blocks)

1766

RAM (288 Kb 
blocks)

800

DSP slices 5867

* Current implementation 
underutilizes the available resources. 
Only ~20% of FPGA being used.

Initial OpenCL results



Future work to close the performance gap
• Blocking

Aggregating multiple work-items in a single kernel call 
could improve the performance. OpenCL provides the 
local-work-size parameter to perform this operation

• Exploit functional parallelism
At the moment we just use 1 in-order queue. But we 
know some of the kernels could be executed concurrently 
using multiple OpenCL queues

• Fuse kernels
Generate a more stream-based implementation by fusing 
kernels that are executed consecutively and/or using 
OpenCL channels

• Learn from experience optimising LFRic kernels 
for FPGAs (UoM)

PSyclone OpenCL future 
work



Summary

• A matrix-vector kernel implementation using Vivado
HLS runs on the UltraScale+ FPGA at 5.3 double 
precision Gflop/s (single precision: similar performance, 63% resources) 

• LFRic is running with two kernels offloaded to FPGA

• We are comparing the low-level Vivado route to a 
high-level OpenCL programming method

• PSyclone is capable of generating OpenCL code to 
target a wider range of architectures incl. FPGAs
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