mmmmmmmmmmmmmm ***

Progress in Porting the LFRic
Weather and Climate model to
FPGAs using C and OpenCL

Mike Ashworth?!, Sergi Siso?, Graham Riley?,
Rupert Ford?, Andrew Porter?

1 Advanced Processor Technologies Group, ‘
Department of Computer Science, MANCH%%EER

University of Manchester, United Kingdom —
The University of Manchester

& Hartree Centre
' Science & Technology Facilities Council

2 The Hartree Centre, STFC Daresbury Laboratory,
Warrington, United Kingdom

mike.ashworth.compsci@manchester.ac.uk

© 2019 EuroEXA and Consortia Member Rights Holders x o x
Project ID: 754337 +EXA

FUNDED BY THE E

LROPEAN UNION

i Talk Outline

e Update on the matrix-vector kernel (MA, GR)

* Implementation for two kernels of LFRic (MA, GR)

* OpenCL kernels on FPGAs (GR)

* Performance portability with PSyclone and OpenCL
(SS, AP, RF)

EUROEXA : Project outline

FUNDED BY THE ELROFEAN UNION. * *

Horizon 2020 FETHPC-01-2016:

Co-design of HPC systems and applications @euroexa
EuroExa started 1st Sep 2017, runs for 3% years
16 Partners, 8 countries, €20M euroexa.eu

Builds on previous projects, esp. ExaNoDe, ExaNeSt, EcoScale

Aim: design, build, test and evaluate an Exascale prototype
Architecture based on ARM CPUs with FPGA accelerators
Three testbed systems: #3 will deliver 2.4 Pflop/s peak
Scalable to 400 Pflop/s at high Gflop/s/W

Low-power design goal to target realistic Exascale system

Architecture evolves in response to application requirements
— Co—design Kick-off meeting 4th-5th Sep 2017,

Barcelona

Wide range of apps, incl. weather forecasting, lattice Boltzmann, multiphysics, astrophysics,
astronomy data processing, quantum chemistry, life sciences and bioinformatics

* X ¥

© 2019 EuroEXA and Consortia Member Rights Holders x o x

* EURO &

Project ID: 754337 VXA,

EUROEXA LFRic Weather and Climate Model

Brand new weather and climate model: LFRic

named after Lewis Fry Richardson (1881-1953) Globally
Uniform
* Dynamics from the GungHo project 2011-2015 Next
 Scalability — globally uniform grid (no poles) Generation
« Speed — maintain performance at high & low Highly
resolution and for high & low core counts Optimized
e Accuracy — need to maintain standing of the model — /"
» Separation of Concerns — PSyclone generated layer 1.
for automated targeting of architectures) |
* Operational weather forecasts around 2022 — W%r;rrfoﬁgﬁg;;r

anniversary of Richardson (1922)

Met Office é S @

Science & Technolog .
RESEARCH COUNCIL -

Facilities Council * x
* EURO x
«EXA

EUROEXA : Motivation

* Field Programmable Gate Array (FPGA) is “a matrix of
configurable logic blocks connected via programmable
interconnects”

* FPGAs offer large gains in performance/W and /S
* Natural route to reduced precision

* Major corporations are using FPGAs in datacentres for
cloud services, analytics, communication, etc.

* Hardware traditionally led by Xilinx (arm cpu + FrGa single chip)

* Intel’s acquisition of Altera led to Heterogeneous
Architecture Research Platform (HARP) (aiso single chip)

* Predictions: up to 30% of datacenter servers will have
FPGAs by 2020

* X ¥
* *

 EUROD #
*EXA 4

~, Three Steps to (FPGA)
D03 P RORAN NN e ** H e a Ve n

EURO!

1. Compile C kernels using Vivado High Level
Synthesis -> IP blocks

2. Lay out the design with your IP blocks and built-in
IP using Vivado Design Suite -> bitstream

3. Write code to drive the FPGA kernels from the
CPU code (Fortran 2003)

*

= MAALriIX-vector multiplication

. FPGA kernels with Vivado HLS —
EURO :

Performance Estimates

-] Timing (ns)
=1 Summary
Clock Target Estimated Uncertainty Utilization Estimate:
ap clk 2.00 2.89 0.25 o]
» Try to maximize performance while
-| Latency (clock cycles) o L. . .
minimizing utilization
-1 Summary
Latency Interval * Shows percentage of chip ‘real-
min| max min| max| Type estate being utilized
233423342334 2334 none
Performance Estimate: Vtilization Estimates
. . -1 Summary
¢ Target zns CIOCk' deSIQn Name BRAM 18K DSP48E FF LUT URAM
validated at 2.89ns = 346 MHz DSP - -
Expression - - o 701
» 2334 cycles for 3840 flops = 1.65 FIFO - - | -
ﬂops/cyc|e Instance 4 10 2527 2222
_ Memory 4 - 0 0
» Overlapped dmul with dadd Multiplexer - - - 4280
. Register - - 20672 - -
« Starting code was 69841 cycles Total 8 10 23199 7203 0
Available 1824 2520 548160 274080 0

Utilization (%) ~0 ~0 4 2

* EURO &
* =N

+ Vivado Design Suite with Twelve

EURO : Matrix-Vector Blocks

FUNDED BY THE ELROFEAN UNION. + x

Diagram ? - F el X
@ e H# X © Q S|+ = C g & o

* Designer Assistance available. Run Elock Automation

|
= oIR
i

E | |
¥

n m mm
X
m [

Il
U]l
i

H H
W, H N
H (H N

|

-
f[:
]

;

£ (m” m|t

X

H 3
e (W)

g 7 —11_ L s C
POl = = = —
e L] e i
CRCEE: i S — N S
LI B T T i
| £ = | e — R = G
— T 0 Rl | —— .
= T o oG = =
B G L O “m'w'»"'u“ | | | | d .-“'““‘"i‘ n bram i 2 0o
- — x : : e —
; = 70g sy e a—

f]
T._-|
11

Xl
h

L_Elfz
4
—
£
¥

Xl

[
|

[TIL

EUROEXA : ARM driver code

FUNDED BY THE ELROFEAN UNION. * *

* Setup two devices /dev/uio0 and /dev/uiol — two ports on the ZynQ IP block
* Use mmap to map the FPGA memory into user space

e Assign pointers for each data array to location in user space

e For each “chunk” of cells: Maintain the LFRic “spirit”:

e Assign work to one of the matrix-vector blocks Standard Fortran 2003
* Copy input data into BRAM using ISO C Interface

* Set the control word “registers” for the block
 Start the block by setting AP_START

* Wait for block to finish by watching AP_IDLE (opportunity for overlap)
e Copy output data from BRAM

* In practice we fill the whole BRAM, then run all 12 matrix-vector blocks, then
copy output data back and repeat

-+, Why you should not throw
=== up your hands in horror!

EURO!

This is far too low-level for me!
.. but

* The beauty of the PSyclone approach in LFRic means
all this can be hidden from the scientist

* Programming models are developing, becoming easier
to use, e.g. OpenCL with HLS

* We are demonstrating capability using low-level tools

.. LFRic Matrix-Vector Kernel -

EUROEXA ' performance

=333 MHz /,/A
= o AR SRR, |ocioensnsnnsinenensnentnensonnensaens menaas AN
//
—4—100 MHz 3

by
o

Best performance 5.3 Gflop/s

* 510 Mflop/s per block =>1.53
flops/cycle (93% of HLS estimate)

» Parallel efficiency at 12 IP blocks 87%

* Clock scaling 100 to 333 MHz is 94%
efficient

 ARM Cortex A53 single core 177
Mflop/s

0 > 4 : 4 e ARM quad-core with OpenMP 615
Number of matrix-vector IP blocks MﬂOp/ S approx.

Performance double-precision Gflop/s
N w
o o

=
(=]
L

0.0

* FPGA:ARM quad-core speed-up: 8.6x

LFRic Matrix-Vector Kernel -

_: critical performance factors

@ a X & ¢ Q s |+ E C g & o
[

Performance of single
matrix-vector block

el —TE i
£

%j :

bebd
[1
|

LI
-
Ih.!
X
ﬁ

Clock speed =

EEnm
[X[X]

HEN
L!

[
|

== 71 Number of matrix-
vector blocks

LFRic Matrix-Vector Kernel -
performance comparison

FUNDED BY THE ELROPEAN UNION

Hardware Matrix- Peak Percentage
vector performance peak
performance (Gflop/s)
(Gflop/s
/CU102 FPGA 5.3 600 0.9% S W
Intel Broadwell E5- 9.86 332.8 3.0% SSS WWW
2650 v2 2.60GHz
8 cores

* FPGA performance is 54% of Broadwell single socket
* Should be scaled by price & power

~+ LFRic Matrix-Vector Kernel -
EUROEXA :

« discussion

* Performance/price and performance/power
* “GPU vs FPGA Performance Comparison”, Berton White Paper, 2016
 GPU: 0.07-0.12 VS. FPGA: 0.23 €/Gflop/s/W
* GPU: 20 VS. FPGA: 70 Gflops/W
* FPGAs have a large benefit in power efficiency

* Matrix-vector (MVM) vs. matrix multiply (MXM)

* For large N, MVM asymptotically approaches
computational intensity (Cl) of 0.25 flops/byte

 MXM has a computational intensity of N/12, so even for
small matrices (12x12) Cl is one flop/byte

* Matrix-vector is much harder than matrix-multiply

Ashworth et al, “First steps in porting the LFRic Weather and Climate model
to the FPGAs of the EuroExa architecture”, Scientific Programming, in press 2019

* X ¥
* *
* EURO %

*EXA 4

+, Implementation in LFRic —
EUROEXA : . "

= intercepting LFRic kernels

* Simply intercept the single-cell kernel
» e.g. call opt_apply variable _hx_code
* target options: Fortran, C, FPGA

* Or replace the loop over cells by a multi-cell call

e e.g. call multicell _apply_variable hx code (1,
mesh%get _last_edge cell(), ...

e an obvious optimisation for many architectures

* Xk
* *

* EURO x

+ |mplementation in LFRic —
EUROEXA : TP

multiple kernels

* Typical LFRic workload DONE
Kernel 1 (e.g. apply variable _hx_code)
Halo exchange for variable x1
Kernel 2 (e.g. matrix_vector_code)
Halo exchange for variable x2

* Implement multiple IP blocks in the Vivado design

 Communicate on-chip via BRAM memory 1BD
* Only halos sent between CPU & FPGA for MPI
* EuroExa partners working on FPGA-FPGA MPI comms

" OpenCL on FPGAs

LROPEAN UNION

* OpenCL high-level benefits

* OpenCl’'s execution and memory model is a close match for FPGAs
* High-level programming interface e.g. SDSoC, SDAccel
 Partial reconfiguration for dynamic management of kernels *

* Exploring design optimisation space
* OpenCL host parallelism through command-queues
* FPGA deployment options and kernel optimisations

e Context of MPI and threads
e EuroExa TestBedO in Manchester: 8 x ZYNQ UltraScale+

* Pham et al, “ZUCL: A ZYNQ UltraScale+ Framework for OpenCL HLS Applications”, FSP Workshop 2018

* X ¥
* *
* EURO %

*EXA 4

+, PSyclone intermediate
EUROEXA ¢ Y

== representation

* PSyclone aims to provide performance portability while
maintaining a good separation of concerns between the
science and the computational domains.

* New OpenCL back-end to target FPGAs from the same front-
end Fortran code.

Fortran LFRIc Fortran Fortran

Code I Frontend . Backend Code I
Fortran GOcean PSvIR OpenCL OpenCL
Code Frontend y ' Backend Code
Fortran NEMO I
Code Frontend Other back-ends
PSyIR

‘Transformations

-+, PSyclone OpenCL testing

+ with NemolLite2D

FUNDED BY THE ELROPEAN UNION *

* Hartree is using NemolLite2D (GOcean front-end) as
initial example for the OpenCL back-end:

 Vertically averaged version of the dynamical free-surface
part of NEMO. It uses a structured grid and the explicit
Eulerian forward time stepping method.

* |t captures the essence of a real application and it is
relatively complex for an FPGA application, time
stepping contains 11 kernels with a total of ~300 LOC.

* For now, the GOcean front-end is the only one
supported by the OpenCL back-end.

* X ¥
* *

 EUROD #
*EXA 4

+, PSyclone OpenCL code

EUROEXA : :

* OpenCL driver layer: host code controls execution of OpenCL kernels.
PSyclone generates Fortran code that calls the OpenCL API using the
interface provided by the FortCL library github.com/stfc/FortCL

* OpenCL Kernels: device code written in OpenCL. Using the PSyIR
language-independent representation of the kernels, PSyclone is able
to generate an OpenCL version of each kernel

*Simplified subroutine

((vec_type_hint()))
((reqd_work_group_size(’, 1, 1)))
compute_cu_code(

Schedule[name: ' compute_cu_code’]
[]
ArrayReference[name:'cu']
Reference[name:'i"]

Reference[name:'j"] : ctr
[operator: 'MUL"] * P
[operator: 'MUL"] u
Literal[value:"'0.5D0'] i’
[operator: 'ADD'] CULEN1 = (7);
ArrayReference[name:"p"] CULEN2 = (1;
Reference[name:"i"] PLEN1 = @OF
Reference[name:"j"] pLEN2 = (1);
ArrayReference[name:"p"] uLEN1 = (0);
0 [opergtor:'SUB'] uLEN2 = (1);
Reference[name:"i"] i= ();
Literal[value:'1"] j = ():
eference '3t 3 . '] . .
AllﬂyRefelenEeEn;mg:'£??me e _CU[J * CULENl_* il = ((oel * (p[j * pLEN1 + i] + p[j * pLEN1 +
Reference[name:'i'] (1-11)) * ulj * uLEN1 + i]); * X%
Reference[name:"j"] } x *

https://github.com/stfc/FortCL

*x X%

1] {e, : Initial OpenCL results

FUNDED BY THE ELROPEAN UNION * *

Initial results on a Xilinx U200 FPGA PCle card.

—8—Xilinx U200 —a—KNLsingle-core

0.018
m goows O
=
Registers (K) 1831 5 0012
BRAM (36 Kb 1766 £ 0010
blocks) £
RAM (288 Kb 800 5 0.008
blocks) g 0.006
DSP slices 5867 E 0.004
‘g 0.002 A A A
* Current implementation
underutilizes the available resources. 0000
0A2 20012 40072 60072 80012 1,00012 1,20012

Only ~20% of FPGA being used.

Problem Size

+, PSyclone OpenCL future
EUROEXA : > P

Tk
*
-

« work

Future work to close the performance gap
* Blocking

Aggregating multiple work-items in a single kernel call
could improve the performance. OpenCL provides the
local-work-size parameter to perform this operation

* Exploit functional parallelism

At the moment we just use 1 in-order queue. But we
know some of the kernels could be executed concurrently
using multiple OpenCL queues

* Fuse kernels

Generate a more stream-based implementation by fusing
kernels that are executed consecutively and/or using
OpenCL channels

* Learn from experience optimising LFRic kernels
for FPGAs (UoM)

* X ¥
* *
* EURO %

*EXA 4

_+ Summary

FUNDED BY THE E

LROPEAN UNION

* A matrix-vector kernel implementation using Vivado
HLS runs on the UltraScale+ FPGA at 5.3 double

precision GﬂOp/S (single precision: similar performance, 63% resources)
* LFRic is running with two kernels offloaded to FPGA

* We are comparing the low-level Vivado route to a
high-level OpenCL programming method

* PSyclone is capable of generating OpenCL code to
target a wider range of architectures incl. FPGAs

*x X%

°°°°°°°°°°°°°°°°°° “Many thanks
Please connect at
@euroexa or euroexa.eu

Mike Ashworth?!, Sergi Siso?, Graham Riley?,
Rupert Ford?, Andrew Porter?

1 Advanced Processor Technologies Group, ‘
Department of Computer Science, MANCH%%EER

University of Manchester, United Kingdom —
The University of Manchester

& Hartree Centre
' Science & Technology Facilities Council

2 The Hartree Centre, STFC Daresbury Laboratory,
Warrington, United Kingdom

mike.ashworth.compsci@manchester.ac.uk

© 2019 EuroEXA and Consortia Member Rights Holders ‘
Project ID: 754337 +EXA

