
© 2019 EuroEXA and Consortia Member Rights Holders
Project ID: 754337

Mike Ashworth1, Sergi Siso2, Graham Riley1,

Rupert Ford2, Andrew Porter2

Progress in Porting the LFRic
Weather and Climate model to

FPGAs using C and OpenCL

mike.ashworth.compsci@manchester.ac.uk

1 Advanced Processor Technologies Group,
Department of Computer Science,
University of Manchester, United Kingdom

2 The Hartree Centre, STFC Daresbury Laboratory,
Warrington, United Kingdom

Talk Outline

• Update on the matrix-vector kernel (MA, GR)

• Implementation for two kernels of LFRic (MA, GR)

• OpenCL kernels on FPGAs (GR)

• Performance portability with PSyclone and OpenCL
(SS, AP, RF)

Project outline

© 2019 EuroEXA and Consortia Member Rights Holders
Project ID: 754337

Horizon 2020 FETHPC-01-2016:

Co-design of HPC systems and applications
EuroExa started 1st Sep 2017, runs for 3½ years
16 Partners, 8 countries, €20M
Builds on previous projects, esp. ExaNoDe, ExaNeSt, EcoScale

Aim: design, build, test and evaluate an Exascale prototype
Architecture based on ARM CPUs with FPGA accelerators
Three testbed systems: #3 will deliver 2.4 Pflop/s peak
Scalable to 400 Pflop/s at high Gflop/s/W
Low-power design goal to target realistic Exascale system
Architecture evolves in response to application requirements

= co-design

Wide range of apps, incl. weather forecasting, lattice Boltzmann, multiphysics, astrophysics,
astronomy data processing, quantum chemistry, life sciences and bioinformatics

Kick-off meeting 4th-5th Sep 2017,

Barcelona

@euroexa

euroexa.eu

LFRic Weather and Climate Model

Brand new weather and climate model: LFRic
named after Lewis Fry Richardson (1881-1953)

• Dynamics from the GungHo project 2011-2015

• Scalability – globally uniform grid (no poles)

• Speed – maintain performance at high & low
resolution and for high & low core counts

• Accuracy – need to maintain standing of the model

• Separation of Concerns – PSyclone generated layer
for automated targeting of architectures

• Operational weather forecasts around 2022 –
anniversary of Richardson (1922)

Globally

Uniform

Next

Generation

Highly

Optimized

“Working together

harmoniously”

Motivation

• Field Programmable Gate Array (FPGA) is “a matrix of
configurable logic blocks connected via programmable
interconnects”

• FPGAs offer large gains in performance/W and /$
• Natural route to reduced precision
• Major corporations are using FPGAs in datacentres for

cloud services, analytics, communication, etc.
• Hardware traditionally led by Xilinx (ARM CPU + FPGA single chip)

• Intel’s acquisition of Altera led to Heterogeneous
Architecture Research Platform (HARP) (also single chip)

• Predictions: up to 30% of datacenter servers will have
FPGAs by 2020

Three Steps to (FPGA)
Heaven

1. Compile C kernels using Vivado High Level
Synthesis -> IP blocks

2. Lay out the design with your IP blocks and built-in
IP using Vivado Design Suite -> bitstream

3. Write code to drive the FPGA kernels from the
CPU code (Fortran 2003)

FPGA kernels with Vivado HLS –
matrix-vector multiplication

Performance Estimate:

• Target 2ns clock: design
validated at 2.89ns = 346 MHz

• 2334 cycles for 3840 flops = 1.65
flops/cycle

• Overlapped dmul with dadd

• Starting code was 69841 cycles

Utilization Estimate:

• Try to maximize performance while
minimizing utilization

• Shows percentage of chip ‘real-
estate being utilized

Vivado Design Suite with Twelve
Matrix-Vector Blocks

ARM driver code

• Setup two devices /dev/uio0 and /dev/uio1 – two ports on the ZynQ IP block

• Use mmap to map the FPGA memory into user space

• Assign pointers for each data array to location in user space

• For each “chunk” of cells:

• Assign work to one of the matrix-vector blocks

• Copy input data into BRAM

• Set the control word “registers” for the block

• Start the block by setting AP_START

• Wait for block to finish by watching AP_IDLE (opportunity for overlap)

• Copy output data from BRAM

• In practice we fill the whole BRAM, then run all 12 matrix-vector blocks, then
copy output data back and repeat

Maintain the LFRic “spirit”:
Standard Fortran 2003
using ISO C Interface

Why you should not throw
up your hands in horror!

This is far too low-level for me!

…. but ….

• The beauty of the PSyclone approach in LFRic means
all this can be hidden from the scientist

• Programming models are developing, becoming easier
to use, e.g. OpenCL with HLS

• We are demonstrating capability using low-level tools

LFRic Matrix-Vector Kernel -
performance

• Best performance 5.3 Gflop/s

• 510 Mflop/s per block => 1.53
flops/cycle (93% of HLS estimate)

• Parallel efficiency at 12 IP blocks 87%

• Clock scaling 100 to 333 MHz is 94%
efficient

• ARM Cortex A53 single core 177
Mflop/s

• ARM quad-core with OpenMP 615
Mflop/s approx.

• FPGA:ARM quad-core speed-up: 8.6x

LFRic Matrix-Vector Kernel -
critical performance factors

Clock speed

Number of matrix-
vector blocks

Performance of single
matrix-vector block

LFRic Matrix-Vector Kernel -
performance comparison

Hardware Matrix-
vector

performance
(Gflop/s

Peak
performance

(Gflop/s)

Percentage
peak

Price Power

ZCU102 FPGA 5.3 600 0.9% $ W

Intel Broadwell E5-
2650 v2 2.60GHz
8 cores

9.86 332.8 3.0% $$$ WWW

• FPGA performance is 54% of Broadwell single socket

• Should be scaled by price & power

LFRic Matrix-Vector Kernel -
discussion

• Performance/price and performance/power
• “GPU vs FPGA Performance Comparison”, Berton White Paper, 2016

• GPU: 0.07-0.12 vs. FPGA: 0.23 €/Gflop/s/W
• GPU: 20 vs. FPGA: 70 Gflops/W
• FPGAs have a large benefit in power efficiency

• Matrix-vector (MVM) vs. matrix multiply (MXM)
• For large N, MVM asymptotically approaches

computational intensity (CI) of 0.25 flops/byte
• MXM has a computational intensity of N/12, so even for

small matrices (12x12) CI is one flop/byte
• Matrix-vector is much harder than matrix-multiply

Ashworth et al, “First steps in porting the LFRic Weather and Climate model
to the FPGAs of the EuroExa architecture”, Scientific Programming, in press 2019

Implementation in LFRic –
intercepting LFRic kernels

• Simply intercept the single-cell kernel
• e.g. call opt_apply_variable_hx_code

• target options: Fortran, C, FPGA

• Or replace the loop over cells by a multi-cell call
• e.g. call multicell_apply_variable_hx_code (1,

mesh%get_last_edge_cell(), …

• an obvious optimisation for many architectures

Implementation in LFRic –
multiple kernels

• Typical LFRic workload
Kernel 1 (e.g. apply_variable_hx_code)

Halo exchange for variable x1

Kernel 2 (e.g. matrix_vector_code)

Halo exchange for variable x2

• Implement multiple IP blocks in the Vivado design

• Communicate on-chip via BRAM memory

• Only halos sent between CPU & FPGA for MPI

• EuroExa partners working on FPGA-FPGA MPI comms

DONE

TBD

OpenCL on FPGAs

• OpenCL high-level benefits
• OpenCL’s execution and memory model is a close match for FPGAs

• High-level programming interface e.g. SDSoC, SDAccel

• Partial reconfiguration for dynamic management of kernels *

• Exploring design optimisation space
• OpenCL host parallelism through command-queues

• FPGA deployment options and kernel optimisations

• Context of MPI and threads
• EuroExa TestBed0 in Manchester: 8 x ZYNQ UltraScale+

* Pham et al, “ZUCL: A ZYNQ UltraScale+ Framework for OpenCL HLS Applications”, FSP Workshop 2018

• PSyclone aims to provide performance portability while
maintaining a good separation of concerns between the
science and the computational domains.

• New OpenCL back-end to target FPGAs from the same front-
end Fortran code.

PSyIR

Fortran

Code

OpenCL

Code

Fortran

Backend

Transforms

PSyIR

Transformations

OpenCL

Backend

LFRic

Frontend

GOcean

Frontend

NEMO

Frontend

Fortran

Code

Fortran

Code

Fortran

Code Other back-ends

PSyclone intermediate
representation

• Hartree is using NemoLite2D (GOcean front-end) as
initial example for the OpenCL back-end:

• Vertically averaged version of the dynamical free-surface
part of NEMO. It uses a structured grid and the explicit
Eulerian forward time stepping method.

• It captures the essence of a real application and it is
relatively complex for an FPGA application, time
stepping contains 11 kernels with a total of ~300 LOC.

• For now, the GOcean front-end is the only one
supported by the OpenCL back-end.

PSyclone OpenCL testing
with NemoLite2D

• OpenCL driver layer: host code controls execution of OpenCL kernels.
PSyclone generates Fortran code that calls the OpenCL API using the
interface provided by the FortCL library github.com/stfc/FortCL

• OpenCL Kernels: device code written in OpenCL. Using the PSyIR
language-independent representation of the kernels, PSyclone is able
to generate an OpenCL version of each kernel

*Simplified subroutine

PSyclone OpenCL code
generation

https://github.com/stfc/FortCL

Initial results on a Xilinx U200 FPGA PCIe card.

Resource Xilinx U200

LUTs (K) 892

Registers (K) 1831

BRAM (36 Kb
blocks)

1766

RAM (288 Kb
blocks)

800

DSP slices 5867

* Current implementation
underutilizes the available resources.
Only ~20% of FPGA being used.

Initial OpenCL results

Future work to close the performance gap
• Blocking

Aggregating multiple work-items in a single kernel call
could improve the performance. OpenCL provides the
local-work-size parameter to perform this operation

• Exploit functional parallelism
At the moment we just use 1 in-order queue. But we
know some of the kernels could be executed concurrently
using multiple OpenCL queues

• Fuse kernels
Generate a more stream-based implementation by fusing
kernels that are executed consecutively and/or using
OpenCL channels

• Learn from experience optimising LFRic kernels
for FPGAs (UoM)

PSyclone OpenCL future
work

Summary

• A matrix-vector kernel implementation using Vivado
HLS runs on the UltraScale+ FPGA at 5.3 double
precision Gflop/s (single precision: similar performance, 63% resources)

• LFRic is running with two kernels offloaded to FPGA

• We are comparing the low-level Vivado route to a
high-level OpenCL programming method

• PSyclone is capable of generating OpenCL code to
target a wider range of architectures incl. FPGAs

© 2019 EuroEXA and Consortia Member Rights Holders
Project ID: 754337

Many thanks
Please connect at

@euroexa or euroexa.eu
Mike Ashworth1, Sergi Siso2, Graham Riley1,

Rupert Ford2, Andrew Porter2

mike.ashworth.compsci@manchester.ac.uk

1 Advanced Processor Technologies Group,
Department of Computer Science,
University of Manchester, United Kingdom

2 The Hartree Centre, STFC Daresbury Laboratory,
Warrington, United Kingdom

