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SAN DIEGO SUPERCOMPUTER CENTER at UC San Diego
Providing Cyberinfrastructure for Research and Education

SAN DIEGO SUPERCOMPUTER CENTER at UC SAN DIEGO

e Established as a national supercomputer
resource center in 1985 by NSF

e A world leader in HPC, data-intensive computing,

and scientific data management
«“ . ) (// / ////’)
e Current strategic focus on “Big Data”, “versatile C

computing”, and “life sciences appllcations"
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Recent Innovative Architectures

» Gordon: First Flash-based
Supercomputer for Data-intensive
Apps

» Comet: Serving the Long Tail of

Science
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Data Science Today is Both a Big Data and a Big Compute Discipline
S —__ Requires:

« Data management

« Data-driven methods

« Scalable tools for
dynamic coordination
and resource
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Smart Manufacturing _Personalized Precision Medicine  Smart Grid and Energy Management
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‘m Computer-Aided Drug Discovery ~ Smart Cities Disaster Resilience and Response

data science!




Needs and Trends
for the New Era Data Science
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Ultimate Goal

Data Science

UC San Diego




How does successful data science happen?

Exploratory

Insight =g Data Product
Analysis
and

=) [T
Modeling
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Insights amplify the value of data...

Data === Knowledge === Action

Aggregating Expanding Commoditizing
Meta-Data Communities Visualization

Amplifying .
the Value : High Value

of BigData /o aModels | TETEETER ' . A

Intermedate Data
SR Products
Instrument A
Para- Imaging Large
meters Scien- Scale
tists Effort Multiplying, Viz
Massive Raw Image Data HP Parallel Computing
/ Distilling N/ Optimizing \
Big Data Use of HPC

..., but there are many ways to get to insights.
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Approach: Focus on Process and Team Work
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/ Create an Ecosystem that Enables Needs and Best Practiceh
> S == =i

* data-driven
* dynamic
* process-driven

\ e collaborative

ACQUIRE

accountable
reproducible
Interactive

heterogeneous /
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What would it such an
ecosystem look like?

UC San Diego



Creating a Collaborative Data Science Ecosystem
on top of Advanced Infrastructure
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What are some challenges specific to
atmospheric sciences? m

N[@A\

2017 - Biennial Meeting « Annecy., France
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Geospatial Big Data

HPWREN topology, December 2010

Drone imagery

e Flood of new data sources and types

Needs new data management, storage and analysis
methods

Too big for a single server, fast growing data volume

Requires special database structures that can handle
data variety

Too continuous for analysis at a later time, with
increasing streaming rate, i.e., velocity

Varying degrees of uncertainty in measurements, and Weather forecast
other veracity issues

Provides opportunities for scientific understanding at
different scales more than ever, i.e., potential high value

Satellite imagery

Sea Surface Temperature
Measurements
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The ‘scalability’ bottleneck

e Resources needed for geospatial big data (e.g., satellite imagery) analysis
exceed current capabilities, especially in an on-demand fashion

e Cloud computing is an attractive on-demand decentralized model

* Need new scheduling capabilities
e on-demand access to a shared configurable resources
e programmable networks, servers, storage, applications, and services
e Need ability to easily combine users environment and community tools together in
a scalable way
e Various tools with different computing scalability needs

e Costl!!!
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The ‘sensor data’ bottleneck

e Data streaming in at various rates

e “Big Data” by definition in its volume, variety, velocity and viscosity

e Need to improve veracity and add value by providing provenance- and
standards-aware on-the-fly archival capabilities

e QA/QC and automate (real-time) analysis of streaming data before it is even
archived.

e Often low signal-to-noise ratio requiring new methods
e Need for integration of new streaming data technologies
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The “workforce” bottleneck

e Geospatial data processing requires a lot of expertise

e GIS, domain expertise, data engineering, scalable computing, machine
learning, ...

e No open geospatially enabled big data science education platform

e Teach not just technical knowledge, but collaborative work culture
and ethics
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Using workflows to get there...
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Workflows for Data Science
Center of Excellence at SDSC

- Data-Parallel Bioinformatics
bioKepler.org

Access and query data o ) o
Support exploratory design Y el
Scale computational analysis
Increase reuse -

: | bioKepler
Save time, energy and money A=z et St e

Formalize and standardize
Goal: Methodology and tool Train

development to build automated

and operational workflow-driven e

solution architectures on big data

and HPC platforms. O G o—

SD S C §ﬁ',‘,&'§gﬁpm - Scalable Automated Mo{/)icctilzgslg/gjznics and Drug Discovery Lan Diego

Focus on the
question,
not the
technology!
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How can | get smart people
to collaborate and |
communicate S AN

question,

to analyze data and S (-
computing to generate e
insight and solve a
question?
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Programmability Reproducibility

Ease of use, iteration, interaction, re-use, re-purpose

Ability to validate, re-run, re-play

Scalability

From local experiments to large-scale runs

Reporting

Workflow
Execution

Execution P _I)
Review O _D S
Scheduling
and
Execution

Planning

Deploy
and
Publish

Workflow

Design

Process for Practice
of Data Science

Workflow
Monitoring

Provenance
Analysis

BUILD
and SHARE SCALE LEARN
EXPLORE and and
ITERATE REPORT
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P’s in PPoDS
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Platforms _
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Example: Using geospatial big data for
wildfire predictions
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WIFIRE: A Scalable Data-Driven Monitoring, Dynamic
Prediction and Resilience Cyberinfrastructure for Wildfires

Monltoring ttp://wifire.ucsd.edu
Visualization
Fire Modeling




Closing the Loop using Big Data

-- Wildfire Behavior Modeling and Data Assimilation --
e Computational costs for existing

x(O)l l 0 . :
| models too high for real-time
SIS analysi
2(0) | | pk) Prediction Step ° iori -> . .
v ¥ TS a priori -> a posteriori

e Parameter estimation to make

éﬂ (k) i

Operational Wild ke Fire front
Fire Model & ROS

{ adjustments to the (input) parameters
ua (k) | x4 (k) ) . .
o) e State estimation to adjust the
Data Assimilation g3 . . . .
e simulated fire front location with an a
Viisiostep posteriori update/measurement of the

Prediction and Update Steps using Sensor Data
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Fire Modeling Workflows in WIFIRE
firemap.sdsc.edu ‘ | -/’Sﬁ\
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HPWREN topology, December 2010
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Landscape data

Monitoring &
fire mapping

Weather forecast
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Data-Driven Fire Progression August 2016 — Blue Cut Fire
Prediction Over Three Hours [ B (oo e s i s a;/ =
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Some Machine Learning Case Studies

e Smoke and fire perimeter detection based on imagery
e Prediction of Santa Ana and fire conditions specific to location
e Prediction of fuel build up based on fire and weather history

e NLP for understanding local conditions based on radio
communications

e Deep learning on multi-spectra imagery for high resolution fuel maps

e Classification project to generate more accurate fuel maps (using
Planet Labs satellite data)
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Classification project to generate more
accurate fuel maps

e Accurate and up-to-date fuel maps are critical for
modeling wildfire rate of speed and potential burn

2 —
§ —
F —

Linear

areas. a i

e Challenge: | | '

e USGS Landfire provides the best available fuel maps
every two years.

e The WIFIRE system is limited by these potentially 2-year
old inputs. Fuel maps created at a higher temporal
frequency is desired.

e Approach: : =

* Using high-resolution satellite imagery and deep Cluster 1: Short Grass
learning methods, produce surface fuel maps of San :
Diego County and other regions in Southern California. 'l E ,

e Use LandFire fuel maps as the target variable, the s -
objective is create a classification model that will ‘ P
provide fuel maps at greater frequency with a measure : 7
of uncertainty. " a =

Classifier
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Reused in Built Infrastructure and
Demographic Analysis
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Summary

e Geospatial big data has all the typical big data challenges

e Lessons learned from other disciplines to deal with these challenges
should be applied

e Workflows can be used both for managing scalable coordination and
training students and workforce

e Dynamic data-driven integration of machine learning, data
assimilation and modeling is of potential use to many geo
applications
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WIFIRE Team: It takes a village!

Calit2/Ql-
Cyberinfrastructure, GIS,
Cyberinfrastructure, Adva;]nced Visualization,
Workflows, Machine Learning,

Data engineering, IL-|J|r3bV6\I/r|]:2:l|<|Stamabmty’

Machine Learning,
Information Visualization,
HPWREN

UCSD MAE - Data assimilation
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PhD level researchers

Professional software
developers

32 undergraduate students
e UCSan Diego
e UC Merced
e Monash University
e University of Queensland
1 high school student
4 MSc and 5 MAS students
2 PhD students (UMD)

1 postdoctoral researcher

UC San Diego
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Email: altintas@sdsc.edu

Questions?

WorDS Director: Ilkay Altintas, Ph.D.
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Part of the presented work is funded by NSF, DOE, NIH, UC San Diego and various industry partners.
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