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Section 1: Theory

● A decision tree is a flow chart with branch nodes (ellipses) and leaf nodes 
(rectangles).

● In the contrived example below, f is the predicted probability of severe 
weather.



  

Section 1: Theory

● The branch nodes are bifurcating, and the leaf nodes are terminal.

● In other words, each branch node has 2 children and each leaf node has 0 
children.

● Predictions are made 
at the leaf nodes, and 
questions are asked 
at the branch nodes.

● Since the branch nodes 
are bifurcating, 
questions asked at 
the branch nodes 
must be yes-or-no.



  

Section 1: Theory

● Decision trees have been used in meteorology since the 1960s (Chisholm 
1968).

● They were built subjectively by human experts until the 1980s, when an 
objective algorithm (Quinlan 1986) was developed to "train" them (determine 
the best question at each branch node).

● The prediction at leaf 
node L the average of 
all training examples 
that reached L.

● For regression this is a 
real value (average hail 
size of storms that 
reached L).

● For classification this is a 
probability (fraction of 
storms that reached L 
with severe hail).



  

Section 1: Theory

● The question chosen at each branch node is that which maximizes info gain.

● For regression, this is done by minimizing mean squared error (between predicted and 
actual values, e.g., of hail size).

● For classification, this is done by minimizing the “remainder,” which is based on entropy 
of the child nodes.



  

Section 1: Theory

● The entropy of one node is defined below:

● n = number of examples that reached node

● f = fraction of these examples in the positive class (e.g., severe hail as opposed to non-
severe hail)

● n
left

 = number of examples sent to left child (for which the answer to the question is "no")
● n

right
 = number of examples sent to right child (for which answer is "yes")

● E
left

 = entropy of left child
● E

right
 = entropy of right child

● Then the “remainder” is defined as follows:



  

Section 2: Default Decision Tree

● Shown below are results on the training data for a default decision tree 
trained in Python.

● The tree is trained with sklearn.tree.DecisionTreeClassifier, using default input 
arguments (see code here).

● The tree is trained to predict whether a storm will develop strong rotation (vorticity > 
0.00385 s-1) in the future.

https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/ML_Short_Course_Module_2_Basic.ipynb


  

Section 2: Default Decision Tree

● Below: results on validation data for same tree.

● Decrease in skill shows that tree overfit training data strongly:
 AUC drops by 0.101
 Maximum CSI (shown in performance diagram) drops by 0.129
 Brier skill score (shown in attributes diagram) drops by 0.226
 Reliability (shown in attributes diagram) goes from perfect to consistent 

overprediction



  

Section 3: Fancier Decision Tree

● Overfitting can be controlled by limiting the depth of the tree.

● Two hyperparameters (among others) control the depth of a decision tree:
 Minimum sample size (number of examples) at a branch node
 Minimum sample size at a leaf node

● If both values are set to 1, the tree can become very deep, making it easier to overfit.

● You can think of this another way:
 If there is only one example per leaf node, all predictions will be based on only one 

training example.

 These predictions will probably not generalize well outside of training data.

● If minimum sample sizes are too high, the tree will not be deep enough, causing it to 
underfit.



  

Section 3: Fancier Decision Tree

● I played with different minimum sample sizes to find the combo that works best on 
validation data.

● This is called a “hyperparameter experiment”.



  

Section 3: Fancier Decision Tree

● I played with different minimum sample sizes to find the combo that works best on 
validation data.

● This is called a “hyperparameter experiment”.



  

Section 3: Fancier Decision Tree

● I played with different minimum sample sizes to find the combo that works best on 
validation data.

● This is called a “hyperparameter experiment”.



  

Section 3: Fancier Decision Tree

● I picked the tree with the best (highest) validation BSS:
 Minimum sample size per branch node = 500
 Per leaf node = 200

● Testing results for the new tree are shown below.

● The new tree still overfits (skill drops from training to validation/testing data), but 
less than the default tree.



  

Section 4: Random Forests

● A random forest (Breiman 2001) is an ensemble of decision trees.

● In the single decision trees in Section 3, there was a lot of overfitting.

● This is a common problem with decision trees, because they rely on exact 
thresholds, which introduce "jumps" into the decision function.

● For example, in the tree 
shown here, a difference 
of 0.0001 J kg-1 in CAPE 
could lead to a 
difference of 55% in 
severe-Wx probability.



  

Section 4: Random Forests

● One way to mitigate this overfitting is: train a bunch of decision trees.

● If the trees are diverse enough, they will hopefully have offsetting biases 
(overfit in different ways).

● Random forests ensure diversity in two ways:
 Example-bagging (sometimes called “bootstrapping”)
 Predictor-bagging (sometimes called “feature-bagging” or “subsetting”)

Source: Liu et al. (2019)



  

Section 4: Random Forests

● Example-bagging is done by training each tree with a bootstrapped replicate 
of the training data.

● For a training set with N examples, a "bootstrap replicate" is created by randomly 
sampling N examples with replacement.

● Sampling with replacement leads to duplicates. On average, each bootstrapped replicate 
contains only 63.2% (1 – e-1) of unique examples, with the other 37.8% being duplicates.

● This ensures that each tree is trained with a different set of unique examples.

Source: Liu et al. (2019)



  

Section 4: Random Forests

● Predictor-bagging is done by looping over a random subset of predictors at 
each branch node.

● In other words, instead of trying all predictors to find the best question, try 
only a few predictors.

● If there are M predictors, the general rule is to try M1/2 predictors at each branch node.

● e.g., If there are 41 predictors, each branch node will loop over 6 randomly chosen 
predictors.

Source: Liu et al. (2019)



  

Section 4: Random Forests

● Shown below are results on the training data for a random forest trained in 
Python.

● The forest is trained with sklearn.ensemble.RandomForestClassifier (see code here).

● Like single trees in Section 3, the forest is trained to predict whether a storm will develop 
strong rotation (vorticity > 0.00385 s-1) in the future.

https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/ML_Short_Course_Module_2_Basic.ipynb


  

Section 4: Random Forests

● Below: results on validation data for same forest.

● Very small change in skill shows that, unlike single trees, random forest did 
not overfit badly:
 AUC drops by 0.004
 Maximum CSI (shown in performance diagram) increases by 0.007
 Brier skill score (shown in attributes diagram) drops by 0.007
 Likely that none of these differences are statistically significant!



  

Section 5: Gradient-boosted Forests

● Gradient-boosting (Friedman 2002) is another way of ensembling decision 
trees.

● In a random forest the trees are trained independently of each other.

● Conversely, in a GBF, the kth tree is trained to predict the residual from the first k 
– 1 trees.

Source: https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725 

https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725


  

Section 5: Gradient-boosted Forests

● Gradient-boosting (Friedman 2002) is another way of ensembling decision 
trees.

● In a random forest the trees are trained independently of each other.

● Conversely, in a GBF, the kth tree is trained to predict the residual from the first k 
– 1 trees.

Source: http://tvas.me/articles/2019/08/26/Block-Distributed-Gradient-Boosted-Trees.html



  

Section 5: Gradient-boosted Forests

● GBFs can still use example-bagging and 
predictor-bagging.

● However, in most libraries the default is 
no example-bagging or predictor-
bagging.
 i.e., Train each tree with all 

examples and attempt all predictors 
at each branch node.

● In a random forest the trees can be 
trained in parallel (each tree is 
independent of the others), which 
makes random forests faster.

● In a GBF the trees must be trained 
in series, which makes them slower.

● However, in practice GBFs usually 
outperform random forests.

● In a recent contest for solar-energy 
prediction, the top 3 teams all used 
GBFs (McGovern et al. 2015).

Source: http://tvas.me/articles/2019/08/26/Block-Distributed-Gradient-Boosted-Trees.html



  

Section 5: Gradient-boosted Forests

● Shown below are results on the training data for a GBF trained in Python.

● The forest is trained with sklearn.ensemble.GradientBoostingClassifier (see code 
here).

● Like single trees in Section 3 and random forests in Section 4, GBF is trained to predict 
whether a storm will develop strong rotation (vorticity > 0.00385 s-1) in the future.

https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/ML_Short_Course_Module_2_Basic.ipynb


  

Section 5: Gradient-boosted Forests

● Below: results on validation data for same GBF.

● Like the random forest but unlike single trees, GBF did not overfit badly:
 AUC drops by 0.008
 Maximum CSI (shown in performance diagram) increases by 0.001
 Brier skill score (shown in attributes diagram) drops by 0.022
 Likely that none of these differences are statistically significant!

● Validation results slightly worse for GBF than for random forest (but again, differences 
probably not significant).



  

Section 6: Summary

● Decision trees can solve a regression or classification problem, using a series of yes-or-no 
questions.

● Main advantage of decision trees: human-readability.

● Main disadvantage: they commonly overfit.

● Overfitting can be mitigated by ensembling decision trees, using a random or gradient-
boosted forest.

● Disadvantage of forests: not human-readable.
 The individual trees are, but there are usually hundreds of trees.

● You can find interactive code for all the experiments shown here: 
https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/ML_Short_Course_Module_2_Basic.ipynb

● Applications of decision trees and forests in atmospheric science:
 https://link.springer.com/content/pdf/10.1007/s10994-013-5346-7.pdf 
 https://link.springer.com/content/pdf/10.1007/s10994-013-5343-x.pdf 
 https://journals.ametsoc.org/waf/article/30/6/1781/40289 
 https://journals.ametsoc.org/waf/article/32/6/2175/41018 
 https://journals.ametsoc.org/jamc/article/57/7/1575/68277 
 https://journals.ametsoc.org/waf/article/35/2/537/345548 
 https://journals.ametsoc.org/waf/article/32/5/1819/41181 

https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/ML_Short_Course_Module_2_Basic.ipynb
https://link.springer.com/content/pdf/10.1007/s10994-013-5346-7.pdf
https://link.springer.com/content/pdf/10.1007/s10994-013-5343-x.pdf
https://journals.ametsoc.org/waf/article/30/6/1781/40289
https://journals.ametsoc.org/waf/article/32/6/2175/41018
https://journals.ametsoc.org/jamc/article/57/7/1575/68277
https://journals.ametsoc.org/waf/article/35/2/537/345548
https://journals.ametsoc.org/waf/article/32/5/1819/41181
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