

Decision Trees and Their
Ensembles

Ryan Lagerquist
(@ralager_Wx, ryan.lagerquist@noaa.gov)

Lecture for NCAR AI summer school

June 22, 2020

http://twitter.com/ralager_Wx
mailto:ryan.lagerquist@noaa.gov

Section 1: Theory

● A decision tree is a flow chart with branch nodes (ellipses) and leaf nodes
(rectangles).

● In the contrived example below, f is the predicted probability of severe
weather.

Section 1: Theory

● The branch nodes are bifurcating, and the leaf nodes are terminal.

● In other words, each branch node has 2 children and each leaf node has 0
children.

● Predictions are made
at the leaf nodes, and
questions are asked
at the branch nodes.

● Since the branch nodes
are bifurcating,
questions asked at
the branch nodes
must be yes-or-no.

Section 1: Theory

● Decision trees have been used in meteorology since the 1960s (Chisholm
1968).

● They were built subjectively by human experts until the 1980s, when an
objective algorithm (Quinlan 1986) was developed to "train" them (determine
the best question at each branch node).

● The prediction at leaf
node L the average of
all training examples
that reached L.

● For regression this is a
real value (average hail
size of storms that
reached L).

● For classification this is a
probability (fraction of
storms that reached L
with severe hail).

Section 1: Theory

● The question chosen at each branch node is that which maximizes info gain.

● For regression, this is done by minimizing mean squared error (between predicted and
actual values, e.g., of hail size).

● For classification, this is done by minimizing the “remainder,” which is based on entropy
of the child nodes.

Section 1: Theory

● The entropy of one node is defined below:

● n = number of examples that reached node

● f = fraction of these examples in the positive class (e.g., severe hail as opposed to non-
severe hail)

● n
left

 = number of examples sent to left child (for which the answer to the question is "no")
● n

right
 = number of examples sent to right child (for which answer is "yes")

● E
left

 = entropy of left child
● E

right
 = entropy of right child

● Then the “remainder” is defined as follows:

Section 2: Default Decision Tree

● Shown below are results on the training data for a default decision tree
trained in Python.

● The tree is trained with sklearn.tree.DecisionTreeClassifier, using default input
arguments (see code here).

● The tree is trained to predict whether a storm will develop strong rotation (vorticity >
0.00385 s-1) in the future.

https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/ML_Short_Course_Module_2_Basic.ipynb

Section 2: Default Decision Tree

● Below: results on validation data for same tree.

● Decrease in skill shows that tree overfit training data strongly:
 AUC drops by 0.101
 Maximum CSI (shown in performance diagram) drops by 0.129
 Brier skill score (shown in attributes diagram) drops by 0.226
 Reliability (shown in attributes diagram) goes from perfect to consistent

overprediction

Section 3: Fancier Decision Tree

● Overfitting can be controlled by limiting the depth of the tree.

● Two hyperparameters (among others) control the depth of a decision tree:
 Minimum sample size (number of examples) at a branch node
 Minimum sample size at a leaf node

● If both values are set to 1, the tree can become very deep, making it easier to overfit.

● You can think of this another way:
 If there is only one example per leaf node, all predictions will be based on only one

training example.

 These predictions will probably not generalize well outside of training data.

● If minimum sample sizes are too high, the tree will not be deep enough, causing it to
underfit.

Section 3: Fancier Decision Tree

● I played with different minimum sample sizes to find the combo that works best on
validation data.

● This is called a “hyperparameter experiment”.

Section 3: Fancier Decision Tree

● I played with different minimum sample sizes to find the combo that works best on
validation data.

● This is called a “hyperparameter experiment”.

Section 3: Fancier Decision Tree

● I played with different minimum sample sizes to find the combo that works best on
validation data.

● This is called a “hyperparameter experiment”.

Section 3: Fancier Decision Tree

● I picked the tree with the best (highest) validation BSS:
 Minimum sample size per branch node = 500
 Per leaf node = 200

● Testing results for the new tree are shown below.

● The new tree still overfits (skill drops from training to validation/testing data), but
less than the default tree.

Section 4: Random Forests

● A random forest (Breiman 2001) is an ensemble of decision trees.

● In the single decision trees in Section 3, there was a lot of overfitting.

● This is a common problem with decision trees, because they rely on exact
thresholds, which introduce "jumps" into the decision function.

● For example, in the tree
shown here, a difference
of 0.0001 J kg-1 in CAPE
could lead to a
difference of 55% in
severe-Wx probability.

Section 4: Random Forests

● One way to mitigate this overfitting is: train a bunch of decision trees.

● If the trees are diverse enough, they will hopefully have offsetting biases
(overfit in different ways).

● Random forests ensure diversity in two ways:
 Example-bagging (sometimes called “bootstrapping”)
 Predictor-bagging (sometimes called “feature-bagging” or “subsetting”)

Source: Liu et al. (2019)

Section 4: Random Forests

● Example-bagging is done by training each tree with a bootstrapped replicate
of the training data.

● For a training set with N examples, a "bootstrap replicate" is created by randomly
sampling N examples with replacement.

● Sampling with replacement leads to duplicates. On average, each bootstrapped replicate
contains only 63.2% (1 – e-1) of unique examples, with the other 37.8% being duplicates.

● This ensures that each tree is trained with a different set of unique examples.

Source: Liu et al. (2019)

Section 4: Random Forests

● Predictor-bagging is done by looping over a random subset of predictors at
each branch node.

● In other words, instead of trying all predictors to find the best question, try
only a few predictors.

● If there are M predictors, the general rule is to try M1/2 predictors at each branch node.

● e.g., If there are 41 predictors, each branch node will loop over 6 randomly chosen
predictors.

Source: Liu et al. (2019)

Section 4: Random Forests

● Shown below are results on the training data for a random forest trained in
Python.

● The forest is trained with sklearn.ensemble.RandomForestClassifier (see code here).

● Like single trees in Section 3, the forest is trained to predict whether a storm will develop
strong rotation (vorticity > 0.00385 s-1) in the future.

https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/ML_Short_Course_Module_2_Basic.ipynb

Section 4: Random Forests

● Below: results on validation data for same forest.

● Very small change in skill shows that, unlike single trees, random forest did
not overfit badly:
 AUC drops by 0.004
 Maximum CSI (shown in performance diagram) increases by 0.007
 Brier skill score (shown in attributes diagram) drops by 0.007
 Likely that none of these differences are statistically significant!

Section 5: Gradient-boosted Forests

● Gradient-boosting (Friedman 2002) is another way of ensembling decision
trees.

● In a random forest the trees are trained independently of each other.

● Conversely, in a GBF, the kth tree is trained to predict the residual from the first k
– 1 trees.

Source: https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725

https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725

Section 5: Gradient-boosted Forests

● Gradient-boosting (Friedman 2002) is another way of ensembling decision
trees.

● In a random forest the trees are trained independently of each other.

● Conversely, in a GBF, the kth tree is trained to predict the residual from the first k
– 1 trees.

Source: http://tvas.me/articles/2019/08/26/Block-Distributed-Gradient-Boosted-Trees.html

Section 5: Gradient-boosted Forests

● GBFs can still use example-bagging and
predictor-bagging.

● However, in most libraries the default is
no example-bagging or predictor-
bagging.
 i.e., Train each tree with all

examples and attempt all predictors
at each branch node.

● In a random forest the trees can be
trained in parallel (each tree is
independent of the others), which
makes random forests faster.

● In a GBF the trees must be trained
in series, which makes them slower.

● However, in practice GBFs usually
outperform random forests.

● In a recent contest for solar-energy
prediction, the top 3 teams all used
GBFs (McGovern et al. 2015).

Source: http://tvas.me/articles/2019/08/26/Block-Distributed-Gradient-Boosted-Trees.html

Section 5: Gradient-boosted Forests

● Shown below are results on the training data for a GBF trained in Python.

● The forest is trained with sklearn.ensemble.GradientBoostingClassifier (see code
here).

● Like single trees in Section 3 and random forests in Section 4, GBF is trained to predict
whether a storm will develop strong rotation (vorticity > 0.00385 s-1) in the future.

https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/ML_Short_Course_Module_2_Basic.ipynb

Section 5: Gradient-boosted Forests

● Below: results on validation data for same GBF.

● Like the random forest but unlike single trees, GBF did not overfit badly:
 AUC drops by 0.008
 Maximum CSI (shown in performance diagram) increases by 0.001
 Brier skill score (shown in attributes diagram) drops by 0.022
 Likely that none of these differences are statistically significant!

● Validation results slightly worse for GBF than for random forest (but again, differences
probably not significant).

Section 6: Summary

● Decision trees can solve a regression or classification problem, using a series of yes-or-no
questions.

● Main advantage of decision trees: human-readability.

● Main disadvantage: they commonly overfit.

● Overfitting can be mitigated by ensembling decision trees, using a random or gradient-
boosted forest.

● Disadvantage of forests: not human-readable.
 The individual trees are, but there are usually hundreds of trees.

● You can find interactive code for all the experiments shown here:
https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/ML_Short_Course_Module_2_Basic.ipynb

● Applications of decision trees and forests in atmospheric science:
 https://link.springer.com/content/pdf/10.1007/s10994-013-5346-7.pdf
 https://link.springer.com/content/pdf/10.1007/s10994-013-5343-x.pdf
 https://journals.ametsoc.org/waf/article/30/6/1781/40289
 https://journals.ametsoc.org/waf/article/32/6/2175/41018
 https://journals.ametsoc.org/jamc/article/57/7/1575/68277
 https://journals.ametsoc.org/waf/article/35/2/537/345548
 https://journals.ametsoc.org/waf/article/32/5/1819/41181

https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/ML_Short_Course_Module_2_Basic.ipynb
https://link.springer.com/content/pdf/10.1007/s10994-013-5346-7.pdf
https://link.springer.com/content/pdf/10.1007/s10994-013-5343-x.pdf
https://journals.ametsoc.org/waf/article/30/6/1781/40289
https://journals.ametsoc.org/waf/article/32/6/2175/41018
https://journals.ametsoc.org/jamc/article/57/7/1575/68277
https://journals.ametsoc.org/waf/article/35/2/537/345548
https://journals.ametsoc.org/waf/article/32/5/1819/41181

References

Breiman, L., 2001: “Random forests.” Machine Learning, 45 (1), 5–32,
https://link.springer.com/content/pdf/10.1023/A:1010933404324.pdf.

Chisholm, D., J. Ball, K. Veigas, and P. Luty, 1968: "The diagnosis of upper-level humidity."
Journal of Applied Meteorology, 7 (4), 613-619.

Friedman, J., 2002: “Stochastic gradient boosting.” Computational Statistics and Data
Analysis, 38 (4), 367–378,
https://www.sciencedirect.com/science/article/abs/pii/S0167947301000652.

McGovern, A., D. Gagne II, J. Basara, T. Hamill, and D. Margolin, 2015: "Solar energy
prediction: An international contest to initiate interdisciplinary research on compelling
meteorological problems." Bulletin of the American Meteorological Society, 96 (8), 1388-
1395, https://journals.ametsoc.org/bams/article/96/8/1388/69447.

Quinlan, J., 1986: "Induction of decision trees." Machine Learning, 1 (1), 81–106,
https://link.springer.com/article/10.1007/BF00116251.

https://link.springer.com/content/pdf/10.1023/A:1010933404324.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0167947301000652
https://journals.ametsoc.org/bams/article/96/8/1388/69447
https://link.springer.com/article/10.1007/BF00116251

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

