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Land carbon cycle predictions are uncertain, but have 
significant consequences

CMIP3/C4MIP emulation with MAGICC6 is 811–
1170ppm. As discussed above, the lower range of the
CMIP5 ESMs is due to one single model, MRI-ESM1,
which already severely underestimates the present-day
atmospheric CO2 concentration. Not including this model
would mean that the lower end of the MAGICC6 range is
significantly lower than the lower end of theCMIP5ESMs.
The warming ranges simulated by the CMIP5 ESMs

and by the CMIP3/C4MIP model emulations are quite
similar (Figs. 2b and 2d). The first set of models displays
a full range of 2.58–5.68C, while the latter set has a 90%
probability range of 2.98–5.98C.

5. Twenty-first-century land and ocean carbon cycle

To further understand the difference in simulated
atmospheric CO2 over the twenty-first century, we
analyzed the carbon budget simulated by the models, as
already done for the historical period. In the E-driven
runs, the ESMs simulate the atmospheric CO2 concen-
tration as the residual of the prescribed anthropogenic

emissions minus the sum of the land and ocean carbon
uptakes—these latter two fluxes being interactively
computed by the land and ocean biogeochemical com-
ponents of the ESMs. Figure 4 shows the cumulative
land and ocean carbon uptakes simulated by the CMIP5
ESMs. Any difference in simulated atmospheric CO2

comes from differences in the land or ocean uptakes.
The models show a large range of future carbon up-

take, both for the land and for the ocean (Figs. 4a and
4b). However, for the ocean, 10 out of the 11 models
have a cumulative oceanic uptake ranging between 412
and 649PgC by 2100, the exception being INM-CM4.0
with an oceanic uptake of 861PgC. As discussed in the
historical section, the reasons for this large simulated
uptake are unknown. The simulated land carbon fluxes
show a much larger range, from a cumulative source of
165PgC to a cumulative sink of 758PgC. Eight models
simulate that the land acts as a carbon sink over the full
period. Land is simulated to be a carbon source by two
models, CESM1-BGC and NorESM1-ME, both sharing
the same land carbon cycle model, and byMIROC-ESM.

FIG. 4. Range of (a) cumulative global air to ocean carbon flux (PgC), (b) cumulative global air to land carbon flux
(PgC) from the 11ESMsE-driven simulations, (c) the annual global air to ocean carbon flux, and (d) annual global air
to land carbon flux. Color code for model types is as in Fig. 1.

15 JANUARY 2014 FR I EDL I NGSTE IN ET AL . 521

Land carbon 
SINK

Land carbon 
SOURCE

Friedlingstein et al. (2014)

Coupled Climate-Carbon 
Cycle Model Intercomparison 
Project (C4MIP)

Lovenduski & Bonan (2017)

Uncertainty in 
land model 

structure and 
parameters



Uncertainty in Land Model Parameters
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Lawrence et al. (2019)

An example: 
Stomatal Conductance



Example of Parameter Uncertainty: Stomatal Conductance
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Image: evolution.berkeley.edu
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The slope of this line is an 
important model parameter, but its 
value is uncertain.

g1 = slope parameter 
(!mol H2O/!mol CO2)

CLM5 Documentation, Release

9.3 Stomatal resistance

CLM5 calculates stomatal conductance using the Medlyn stomatal conductance model (Medlyn et al. 2011). Previous
versions of CLM calculated leaf stomatal resistance is using the Ball-Berry conductance model as described by Collatz
et al. (1991) and implemented in global climate models (Sellers et al. 1996). The Medlyn model calculates stomatal
conductance (i.e., the inverse of resistance) based on net leaf photosynthesis, the vapor pressure deficit, and the CO2
concentration at the leaf surface. Leaf stomatal resistance is:

1

rs
= gs = go + 1.6(1 +

g1p
D
)

An

cs/Patm
(9.1)

where rs is leaf stomatal resistance (s m2 µmol-1), go is the minimum stomatal conductance (µ mol m -2 s-1), An is leaf
net photosynthesis (µmol CO2 m-2 s-1), cs is the CO2 partial pressure at the leaf surface (Pa), Patm is the atmospheric
pressure (Pa), and D is the vapor pressure deficit at the leaf surface (kPa). g1 is a plant functional type dependent
parameter (Table 9.1).

The value for go = 100 µ mol m -2 s-1 for C3 and C4 plants. Photosynthesis is calculated for sunlit (Asun) and shaded
(Asha) leaves to give rsuns and rshas . Additionally, soil water influences stomatal resistance through plant hydraulic
stress, detailed in the Plant Hydraulics chapter.

Resistance is converted from units of s m2 µ mol-1 to s m-1 as: 1 s m-1 = 1⇥ 10
�9Rgas

✓atm

Patm

µ mol-1 m2 s, where Rgas

is the universal gas constant (J K-1 kmol-1) (Table 2.7) and ✓atm is the atmospheric potential temperature (K).

Table 9.1: Plant functional type (PFT) stomatal conductance parameters.
PFT g1
NET Temperate 2.35
NET Boreal 2.35
NDT Boreal 2.35
BET Tropical 4.12
BET temperate 4.12
BDT tropical 4.45
BDT temperate 4.45
BDT boreal 4.45
BES temperate 4.70
BDS temperate 4.70
BDS boreal 4.70
C3 arctic grass 2.22
C3 grass 5.25
C4 grass 1.62
Temperate Corn 1.79
Spring Wheat 5.79
Temperate Soybean 5.79
Cotton 5.79
Rice 5.79
Sugarcane 1.79
Tropical Corn 1.79
Tropical Soybean 5.79

9.4 Photosynthesis

Photosynthesis in C3 plants is based on the model of Farquhar et al. (1980). Photosynthesis in C4 plants is based on
the model of Collatz et al. (1992). Bonan et al. (2011) describe the implementation, modified here. In its simplest

106 Chapter 9. Stomatal Resistance and Photosynthesis

Medlyn et al. (2011)

Example of Parameter Uncertainty: Stomatal Conductance



Can we use machine learning to quantify parameter 
uncertainty?
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The Game of Climate Model Biases 

Find new study: 
update old, wrong 
parameter value 

Add new structure to 
account for new knowledge 

Two alternative 
algorithms for poorly 
understood process.  

Different but-still-
reasonable value 
gives better answers 

Use value 
calibrated at 
single site. 

Figure from Rosie Fisher

Can we use machine 
learning to streamline 

this process?

Hand-tuning 
parameter values 
takes a long time 
(many model runs, 
trial and error).



Neural Networks as Land Model Emulators
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Input: parameter values Output: land model 
predictions

The Land Model Working Group
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Network image: http://cs231n.github.io/neural-networks-1/



Emulation of Climate Models Using Neural Networks
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A similar process is conducted for the prediction of
w ik: to measure the prediction ability of the network,
we predict the K principal components for each mem-
ber of the verification set. The prediction error is root-
mean-square difference between the neural network es-
timation and the actual value in the verification set. We
measure the smoothness of the response surface by tak-
ing the root-mean-square response to a small param-
eter perturbation, as before. Again, six neurons are ap-
propriate for predicting w ik.

The cost function used in the iterating training pro-
cedure measures network performance as a combina-
tion of the mean squared prediction error (85%) and
the mean squared weight and bias values (15%). This
prevents any single neuron from being weighted too
highly, which was found to further help prevent the
network from overfitting.

Once the network has been trained and verified, we
perform a Monte Carlo parameter perturbation experi-
ment, emulating an ensemble many orders of magni-
tude greater than the original climateprediction.net
dataset. The ensemble densely samples the emulated
parameter space, allowing a search for the best-
performing models in different (0.1 K) bins of climate
sensitivity, as judged by various observational con-
straints.

The underlying function of minimized model–
observation error as a function of sensitivity E (S) is
thus discretized into 0.1-K bins of S. The Monte Carlo
ensemble is sufficiently densely populated so that the
following statements are true:

• E (S) is a smooth, continuous function.
• E (S) does not alter if the sampling density is further

increased.

Note that the issues of prior sampling of climate sen-
sitivity raised in Frame et al. (2005) are not relevant
here, because we do not attempt to assign probabilities
to different values of S. The sampling of S is simply
used to outline the shape of the underlying func-
tion E (S).

3. Results

a. Verification

We first show a demonstration of the ability of the
neural network to predict an unseen verification set
within the ensemble itself. Figure 4a illustrates the net-
work’s ability to predict S. Figure 4b shows that the
standard error in prediction increases with increasing
sensitivity, an effect also noted both in Piani et al.
(2005) and Knutti et al. (2006). This is simply explained
by considering that observables tend to scale with !, the
inverse of S. Although in practice, a direct prediction of
S with the neural network is considerably more accu-
rate than a linear prediction of ! for large values of S.

The network must be able to predict model climatol-
ogy for previously unseen parameter combinations.
Figure 5 uses the verification set to demonstrate the
network’s ability to predict the total RMSE from ob-
servations for each of the different observation types.

FIG. 4. (a) A plot showing the predicted sensitivities of the verification set of climateprediction.net models as a
function of their actual sensitivities. (b) A plot of the prediction error in S as a function of S. Each point represents
a member of the verification set in the climateprediction.net ensemble and the width between lines represents the
standard error in prediction at a given climate sensitivity.

1 JUNE 2008 S A N D E R S O N E T A L . 2391

Sanderson et al. (2008)

network with optimal performance at minimal computational cost.
A short introduction to neural networks, the discussion of a few
general properties and the choice of an appropriate network size
and training set are discussed in Appendix 2.

The main advantage of neural networks compared to other
methods is that any relationship between input parameters and
output data can be approximated. Even thresholds or qualitatively
different behaviour in different parts of the parameter space can be
modelled. Further, the training simulations can be randomly dis-
tributed in the parameter space. For regular sampling methods like
the latin hypercube sampling (Forest et al. 2002), it is often difficult
to know in advance the number of simulations that is required to
get a good approximation to the original model. In contrast to
these methods, the number of randomly distributed simulations
used to train the neural network can be increased continuously
until the performance of the neural network is sufficient.

The neural network-based climate model substitute is two to
three orders of magnitude faster than the climate model used here.
Even when considering the cost of calculating a training set, the
neural network ensemble method is an order of magnitude or two
more efficient (depending on the ensemble size and the size of the
training set) and also more flexible than calculating the ensemble
explicitly with the climate model. For example, the a priori
assumptions for the uncertainties can be changed easily to inves-
tigate sensitivities, without recalculating the training set or
retraining the network.

To summarize, the ensemble procedure including the neural
network substitute is sketched in Fig. 1b. First, a priori probabil-
ities for the errors and uncertainties have to be assumed. Second, a
set of 1000 simulations is calculated by varying the uncertainties
randomly. Third, the neural network is designed and trained using
half of the simulations for training and the rest for independent
validation. Fourth, the actual ensemble is generated using the
neural network to predict the climate response from the uncertainty
parameters. Those simulations consistent with observations are
selected to calculate an a posteriori probability density function of
whatever quantity is desired. The ensemble size is continuously
increased until the PDF is stationary. For all the results presented,
the initial unconstrained ensemble encompasses at least 106

ensemble members generated by the neural network. The proba-
bility density functions obtained can therefore be considered as
stationary with a high degree of accuracy.

2.5 Model and neural network performance

The performance of the climate model as well as the neural network
substitute is shown in Fig. 2. The plotted simulation is randomly
chosen for illustration among those simulations which are consis-
tent with the observations. In general, surface warming calculated
from the climate models (solid) agrees well with observations
(shaded band, data from Jones et al. 1999). Both the trend and
most of the decadal variations are reproduced. However, some
features like the almost constant temperatures between 1940 and
1970 and the strong warming after 1980 are not well reproduced,
indicating that either the external forcing is not entirely correct or
that part of the observed warming is due to internal processes. For
the ocean heat uptake over the last 40 years, only the trend of the
data (Levitus et al. 2000) can be reproduced, very similar to results
obtained by comprehensive models (Barnett et al. 2001; Reichert
et al. 2002). Even the most complex models are currently not able
to simulate such observed internal variability, e.g. caused by the
El Niño-Southern Oscillation (Levitus et al. 2001; Barnett et al.
2001; Reichert et al. 2002).

The performance of the neural network in approximating the
climate model response is also illustrated by the simulation shown
in Fig. 2. The approximated response from the trained neural
network (dashed) agrees very well with the explicit climate model
simulation (solid). The error of the neural network is negligible
compared to the uncertainties related to the model setup, param-
eters and input data, and the deviations of the neural network are
not systematic.

3 Results

3.1 Climate sensitivity

The climate sensitivity for ocean–atmosphere models is
commonly expressed as the equilibrium surface air
temperature increase for a doubling of the preindustrial
atmospheric CO2 concentration, and varies considerably
between different models (IPCC 2001). For compre-
hensive coupled atmosphere ocean general circulation
models (AOGCM), the climate sensitivity is internally
determined by physical, chemical and biological (feed-
back) processes and by the way they are parameterized
in the model. Our incomplete knowledge of the cloud
feedbacks in particular contributes to the large uncer-
tainty in climate sensitivity. The most recent assessment
by the IPCC (2001) confirmed the range of 1.5 to 4.5 K
established in earlier studies (Shine et al. 1995), without
indicating any statistical interpretation of that range.

It has recently been suggested that the largely
uncertain climate sensitivity can be constrained by
relating the reconstructed radiative forcing over the
industrial period to the observed surface air warming
and the observed ocean heat uptake. The requirement
that the modelled warming matches the observed
warming should thus place a strong constraint on
anthropogenically forced climate models, and the ocean
heat uptake should impose an even tighter restriction

Fig. 2 a Surface warming and b ocean heat uptake simulated by the
climate model (solid) and approximated by the trained neural
network (dashed) over the observational period. The simulation
shown here is randomly chosen for illustration among those
matching the observational constraints. One standard deviation of
the observations are shown as shaded bands for the reconstructed
global mean surface warming (Jones et al. 1999) and for the global
ocean heat uptake (Levitus et al. 2000). Note that the time axes are
not identical

Knutti et al.: Probabilistic climate change projections using neural networks 261

Knutti et al. (2003)

climate model
neural network

Emulating changes in global average 
surface temperature

Emulating climate sensitivity



Machine Learning Roadmap
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1. Train: Build and train a series of neural networks (NNs) to predict 
land model output, given parameter values as input.

2. Emulate: Use trained NNs as land model emulators to make 
predictions with increased computational efficiency. 

3. Calibrate: Minimize error in predictions relative to observations; 
generate optimal parameter values and distributions.

4. Test: Use optimal parameter values to investigate changes in 
model predictive skill.



Neural Networks as Land Model Emulators
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Input: parameter values Output: land model perturbed 
parameter ensemble

A machine learning algorithm is trained to predict land model output, given parameter values as input.

Ensemble of model simulations

Step 1: Train

The Land Model Working Group
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Generating the Training Data
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Ensemble of model simulations

Distribution of model 
responses (EOF1 of gross 
primary production, or GPP)

Land model* perturbed physics 
ensemble (PPE) using 100 
parameter combinations generated 
with Latin Hypercube sampling

*Offline land-only simulations forced by atmospheric reanalysis data

Predict modes of variability of 
carbon and water fluxes



Adventures in Pre-Processing!
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Adventures in Pre-Processing!
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https://keras.io/guides/sequential_model/

https://machinelearningmastery.com/understand-the-dynamics-
of-learning-rate-on-deep-learning-neural-networks/

https://keras.io/guides/sequential_model/
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/


Neural Networks as Land Model Emulators
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Input: parameter values Output: land model perturbed 
parameter ensemble

Train to predict spatial variability (first 3 EOFs) of gross primary production (GPP).
Separate emulator built for first 3 EOFs of latent heat flux (LHF).

Step 1: Train
2-layer feed-forward artificial neural 
network (ANN)

P1 P2 P3 P4 P5 P6

S1 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

S2 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6

S3 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6

… … … … … … …

S100 x100,1 x100,2 x100,3 x100,4 x100,5 x100,6

p1
p2
p3
p4
p5
p6

n13
n12
n11

n1j

n21
n22
n23

n2k

z1
z2
z3

Input Layer Hidden Layer 1 Hidden Layer 2
Output Layer
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Hyperparameter Optimization

Primary ANN configuration options: 

§ Number of hidden layers

§ Number of nodes/neurons in each layer

§ Activations between layers (e.g., linear, nonlinear)

§ Optimization algorithm 

§ Learning rate

§ Batch size

§ Number of training epochs

p1
p2
p3
p4
p5
p6

n13
n12
n11

n1j

n21
n22
n23

n2k

z1
z2
z3

Input Layer Hidden Layer 1 Hidden Layer 2
Output Layer

2-layer feed-forward artificial neural 
network (ANN)
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Hyperparameter Optimization

Primary ANN configuration options: 

§ Number of hidden layers

2 layers improved performance over a single hidden layer.

§ Number of nodes/neurons in each layer

Iteratively test between 5-15 nodes in each layer, then 
select best performing configurations based on error 
metric and predictive skill. 

§ Activations between layers (e.g., linear, nonlinear)

ReLU improved over linear for first activation; tanh 
improved over sigmoid for second activation.

§ Optimization algorithm 

RMSprop improved predictive skill over SGD. 

p1
p2
p3
p4
p5
p6

n13
n12
n11

n1j

n21
n22
n23

n2k

z1
z2
z3

Input Layer Hidden Layer 1 Hidden Layer 2
Output Layer

Figure from DJ Gagne

Optimization Algorithms

Figure from 
https://imgur.com/a/Hqolp#NKsFHJb

https://imgur.com/a/Hqolp


Hyperparameter Optimization
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Metric = mean squared error between 
emulator predictions and actual model output

Comparing learning rates and plotting 
learning curves over the training process. 

§ Learning rate: how much does the 
model change in response to error?

Learning rate of 0.01 provided a good 
compromise on convergence and 
accuracy.



Hyperparameter Optimization
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Metric = mean squared error between 
emulator predictions and actual model output

Comparing batch sizes and plotting learning 
curves over the training process. 

§ Batch size: number of subsamples 
used to calculate the error gradient

Batch size of 20 provided a good 
compromise on convergence and accuracy.



Hyperparameter Optimization
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Metric = mean squared error between 
emulator predictions and actual model output

§ Number of training epochs: how long to run 
the training process

Comparing batch sizes and plotting learning 
curves over the training process. 

§ Batch size: number of subsamples 
used to calculate the error gradient

Batch size of 20 provided a good 
compromise on convergence and accuracy.

Early Stopping used to determine number of epochs.



Assessing Emulator Performance
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NN predicted vs. land 
model EOF1 GPP

20%
60%
20%

Testing different ANN architectures:

1. Iteratively test ANN hyperparameters, selecting 
best performing configurations. 

2. For the best configurations, randomly resample 
training data 100 times to test variability of 
performance.

3. Select network with highest skill AND lowest 
variability as final configuration.

p1
p2
p3
p4
p5
p6

n13
n12
n11

n1j

n21
n22
n23

n2k

z1
z2
z3

Input Layer Hidden Layer 1 Hidden Layer 2
Output Layer



Out-of-Sample Prediction
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r2 = 0.95 r2 = 0.92

Same emulator; different random parameter values and 
resulting model output. Predictive skill is comparable.

“Best” emulator trained on random 
parameter values and model output.

Original ensemble (EOF1 GPP)
Second ensemble (EOF1 GPP), 

different random parameter values

Dagon et al., in review



Neural Networks as Land Model Emulators
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Input: new parameter 
values and combinations

Output: land model 
predictions

The trained neural network can be applied to test new parameter values and combinations, much 
more quickly and efficiently than running the climate model.

P1 P2 P3 P4 P5 P6

S1 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

S2 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6

S3 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6

… … … … … … …

… … … … … … …

S1000 x1000,1 x1000,2 x1000,3 x1000,4 x1000,5 x1000,6

Step 2: Emulate

Trained neural network emulator

p1
p2
p3
p4
p5
p6

n13
n12
n11

n1j

n21
n22
n23

n2k

z1
z2
z3

Input Layer Hidden Layer 1 Hidden Layer 2
Output Layer



Increase in Computational Efficiency
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~2 hours per 
simulation

2.6 seconds to 
generate predictions!

Land model perturbed 
parameter ensemble Machine learning emulator

p1
p2
p3
p4
p5
p6

n13
n12
n11

n1j

n21
n22
n23

n2k

z1
z2
z3

Input Layer Hidden Layer 1 Hidden Layer 2
Output Layer



Model Interpretation: Variable/Feature Importance
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Variable/Feature Importance
• Randomly shuffle values of one parameter (preserving others) and test performance of emulator.
• Skill metric is mean squared error between predictions and actual values.
• Larger bar means the parameter is more important to the predictive skill of the emulator.

EOF1 Gross Primary Production EOF1 Latent Heat Flux

Dagon et al., in review

The Land Model Working Group
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Model Interpretation: Partial Dependence Plots
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Dagon et al., in review

• Test why a certain parameter is 
important, and plot where in its 
uncertainty range it is most important.

• Fix values of each parameter one at a 
time, and test performance of 
emulator across ensemble members. 

• Regions of non-zero slope indicate 
where in the parameter range the 
emulator is sensitive.

Light colored lines = individual predictions (n=100)
Bolded lines = average prediction



Machine Learning Roadmap

6/24/20 K. Dagon 26

1. Train: Build and train a series of neural networks (NNs) to predict 
land model output, given parameter values as input.

2. Emulate: Use trained NNs as land model emulators to make 
predictions with increased computational efficiency. 

Questions so far?



Machine Learning Roadmap
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1. Train: Build and train a series of neural networks (NNs) to predict 
land model output, given parameter values as input.

2. Emulate: Use trained NNs as land model emulators to make 
predictions with increased computational efficiency. 

3. Calibrate: Minimize error in predictions relative to observations; 
generate optimal parameter values and distributions.

4. Test: Use optimal parameter values to investigate changes in 
model predictive skill.



Observations

Model (CLM) with 
default parameter 
values

Optimizing the Emulator
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Step 3: Calibrate



Can we optimize the 
predictions so the emulator 
gives us the parameter values 
that best fit observations?

Optimizing the Emulator
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Step 3: Calibrate



Optimizing the Emulator
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Step 3: Calibrate



Testing the Emulator Predictions
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Step 4: Test

Dagon et al., in review



Testing the Emulator Predictions
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Step 4: Test

Actually have 6 targets 
for calibration and 
optimization!

Dagon et al., in review



Testing the Emulator Predictions
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Step 4: Test

• Additional sources of 
uncertainty (forcing, 
observations, structural 
biases, other parameters)

• Choice of output variables 
(GPP and LHF)

• Choice of metrics (annual 
mean spatial variability as 
determined by EOF analysis)

Dagon et al., in review



Putting results in the context of climate predictions
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Input: Parameter 
posterior distributions

Output: Predicted change 
in GPP accounting for 
parameter uncertaintyDIFFERENT neural network to emulate future 

climate response of land surface model

Dagon et al., in prep

Best estimates for 
parameter values to 
match observations 



Understanding and Communicating Uncertainties in Modeling
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CMIP3/C4MIP emulation with MAGICC6 is 811–
1170ppm. As discussed above, the lower range of the
CMIP5 ESMs is due to one single model, MRI-ESM1,
which already severely underestimates the present-day
atmospheric CO2 concentration. Not including this model
would mean that the lower end of the MAGICC6 range is
significantly lower than the lower end of theCMIP5ESMs.
The warming ranges simulated by the CMIP5 ESMs

and by the CMIP3/C4MIP model emulations are quite
similar (Figs. 2b and 2d). The first set of models displays
a full range of 2.58–5.68C, while the latter set has a 90%
probability range of 2.98–5.98C.

5. Twenty-first-century land and ocean carbon cycle

To further understand the difference in simulated
atmospheric CO2 over the twenty-first century, we
analyzed the carbon budget simulated by the models, as
already done for the historical period. In the E-driven
runs, the ESMs simulate the atmospheric CO2 concen-
tration as the residual of the prescribed anthropogenic

emissions minus the sum of the land and ocean carbon
uptakes—these latter two fluxes being interactively
computed by the land and ocean biogeochemical com-
ponents of the ESMs. Figure 4 shows the cumulative
land and ocean carbon uptakes simulated by the CMIP5
ESMs. Any difference in simulated atmospheric CO2

comes from differences in the land or ocean uptakes.
The models show a large range of future carbon up-

take, both for the land and for the ocean (Figs. 4a and
4b). However, for the ocean, 10 out of the 11 models
have a cumulative oceanic uptake ranging between 412
and 649PgC by 2100, the exception being INM-CM4.0
with an oceanic uptake of 861PgC. As discussed in the
historical section, the reasons for this large simulated
uptake are unknown. The simulated land carbon fluxes
show a much larger range, from a cumulative source of
165PgC to a cumulative sink of 758PgC. Eight models
simulate that the land acts as a carbon sink over the full
period. Land is simulated to be a carbon source by two
models, CESM1-BGC and NorESM1-ME, both sharing
the same land carbon cycle model, and byMIROC-ESM.

FIG. 4. Range of (a) cumulative global air to ocean carbon flux (PgC), (b) cumulative global air to land carbon flux
(PgC) from the 11ESMsE-driven simulations, (c) the annual global air to ocean carbon flux, and (d) annual global air
to land carbon flux. Color code for model types is as in Fig. 1.
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Summary
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kdagon@ucar.edu
@katiedagon

Thanks!
Questions?

v Parameter choices are a major contributor to uncertainty in land model 
predictions.

v Neural network emulators can be trained to reproduce land model output 
with greater computational efficiency.

v Emulator predictions are optimized to minimize error between model and 
observations.

v Machine learning can help us understand and communicate uncertainty in 
modeling climate predictions.

Dagon, K., B.M. Sanderson, R.A. Fisher, 
and D.M., Lawrence, A machine learning 
approach to quantify biophysical 
parameter uncertainty in the Community 
Land Model, version 5, in review.



BACKUP SLIDES
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Land Model Parameters
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• Biophysical features (e.g., surface energy balance, hydrology, carbon uptake)
• Individual parameter uncertainty ranges determined by literature review, updated 

observations
• Parameter selection based on a series of sensitivity tests with objective metrics

Name Biophysical parameter description

medlynslope Slope of stomatal conductance-photosynthesis relationship

dleaf Leaf boundary layer resistance parameter

kmax Plant hydraulic stress parameter

fff Surface runoff parameter

dint Soil evaporation parameter

baseflow_scalar Sub-surface runoff parameter



Parameter Sampling for PPE

Latin 
Hypercube 
Sampling

Random 
Sampling



EOF Analysis
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Diagnosing skewness in EOF1 GPP



Parameter Regressions
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Diagnosing skewness in EOF1 GPP


