

DEEP LEARNING ARCHITECTURES

David M. Hall, June 23, 2020

AI4ESS: AI for Earth System Science Workshop and Hackathon

DEEP LEARNING MODEL ZOO

NeuralODE

Bayesian Neural Net

DEEP LEARNING'S CENTRAL PREMISE

LEARN FUNCTIONS FROM DATA

FEATURE ENGINEERING NOT REQUIRED

THE MASTER ALGORITHM Universal Machine Learning is an Ideal, Not Yet a Reality

DISSERTATION

TRACKING THE STATE OF THE ART

Arxiv Sanity Preserver

Papers With Code

AGENDA

Deep Learning Basics Fully Connected Networks CNNs ResNets Encoder-Decoders Masked Convolutions Generative Models Transformers AutoML

DEEP LEARNING BASICS

REVERSE-ENGINEER FUNCTIONS FROM EXAMPLES

IT'S A NEW WAY TO BUILD SOFTWARE

HAND-WRITTEN FUNCTION

Function1(T,P,Q)

update_mass()

update_momentum()

update_energy()

do_macrophysics()

do_microphysics()

y = get_precipitation()

return y

Convert expert knowledge into a function

LEARNED FUNCTION

Function1(T,P,Q)						
A =	relu(w1	*	[T,P,Q]	+	b1)
B =	relu(w2	*	Α	+	b2)
C =	relu(w3	*	В	+	b3)
D =	relu(w4	*	С	+	b4)
E =	relu(w5	*	D	+	b5)
y =	sigmo	id(v	v6	* E	+	b6)
return y						

Reverse-engineer a function from inputs / outputs

COMPLEX PHENOMENA ARE BEST DESCRIBED IMPLICTLY

EXAMPLE: ATMOSPHERIC RIVER

FORWARD AND REVERSE ENGINEERING ARE COMPLIMENTARY

SOFTWARE DEVELOPMENT

ENGINEERED PROGRAMMED LABOR INTENSIVE EXPLICIT EXPLAINABLE HEURISTIC SIMPLE FROM EXPERTISE

For best results, combine them

MACHINE LEARNING

REVERSE ENGINEERED LEARNED AUTOMATIC IMPLICIT SUBTLE REALISTIC COMPLEX FROM EXAMPLES

MACHINE LEARNING IS CURVE FITTING, GENERALIZED

AI, MACHINE LEARNING, DEEP LEARNING

ARTIFICIAL INTELLIGENCE

EXPERT SYSTEMS EXECUTE HAND-WRITTEN ALGORITHMS AT HIGH SPEED

TRADITIONAL ML LEARN FROM EXAMPLES USING HAND-CRAFTED **FEATURES**

DEEP LEARNING

ARTIFICIAL NEURONS Are simple equations with a set of adjustable parameters

Biological neuron

https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7

Artificial neuron

$$y=f(w_1x_1+w_2x_2+w_3x_3)$$

ADJUST MODEL CAPACITY TO FIT YOUR DATA A good model is one that generalizes to new data

OVER FIT

15

KEEP TEST, TRAINING, AND VALIDATION DATA SEPERATE

TRAINING DATA, MODEL, LOSS, AND OPTIMIZER

17

TRAINING: SEARCHING FOR A GOOD SOLUTION Model training is a form of search, performed by the optimizer.

 W_{2}

Adjust W1,W2 to minimize loss

COULD USE:

- Grid Search ullet
- **Evolutionary Algorithms** \bullet
- Conjugate Gradient \bullet
- Newton's method \bullet
- Other 2nd order methods ullet

ACTUALLY USE:

Gradient Descent ullet

LOSS

GRADIENT DESCENT

Finding as solution is as easy as falling down a hill

BACKPROPAGATION Compute the gradient, by efficiently assigning blame

🕲 NVIDIA.

AUTOGRAD Let a framework keep track of your gradient, so you don't have to

PyTorch Autograd

from torch.autograd import Variable

x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))

```
i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()
```


21

WHAT YOU NEED TO MAKE IT WORK You need three main ingredients (and some skill)

LARGE QUANTITIES OF DATA

ML FRAMEWORK

GPU ACCELERATOR

DEEP LEARNING FRAMEWORK Many frameworks to choose from (but not Fortran)

GPUS MAKE MACHINE LEARNING PRACTICAL Train in a day? Or a month?

1000X by 2025

2020

LEARNED FUNCTIONS ARE GPU ACCELERATED Next level software. No porting required.

GPU ACCELERATED FUNCTIONS

HOW CAN I GET ACCESS TO A POWERFUL GPU? Many way to take advantage of NVIDIA GPUs for Deep Learning

NVIDIA Quadro Laptop or Workstation Cloud Computing Services (Free hours to start)

National Supercomputers (Apply for compute)

Google Colab (1 Free NVIDIA GPU)

FULLY CONNECTED NETWORKS (MULTI-LAYER PERCPTRONS)

FULLY CONNECTED NETWORKS A given neuron is connected to every neuron in the previous layer

28

SINGLE LAYER NEURAL NETWORKS A series expansion over basis functions ϕ .

$$y = \sum_{i} w_{i} \phi_{i}(x + b_{i}) \qquad \phi_{1} \qquad \phi_{2} \qquad x$$
TAYLOR SERIES
$$\frac{x^{0}}{sin(x)} \qquad x^{1} \qquad x$$
FOURIER SERIES
RELU
RELU

TWO LAYER NEURAL NETWORKS Learn the function and the basis functions at the same time

L1: RELU BASIS FCNS

DEEPER NEURAL NETWORKS More layers allows for more levels of abstraction

Input

Low-level features

Mid-level features

https://web.eecs.umich.edu/~honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf

High-level features

Probability Image is A Face

🕲 NVIDIA.

Large Scale Visual Recognition Challenge 2012

The Imagenet competition: Automatically classify images from 1000 different categories

32

CONVOLUTIONAL NEURAL NETWORKS

WHAT ARE CNNS USED FOR?

Problems with translational invariance

Computer Vision Invariance in 2d space **Computational Physics** Invariance in 3d space

Audio and Time Series Invariance in time

COMPUTER VISION TASKS Each task requires a different model and data setup

Classification

Classification + Localization

Object Detection

Instance Segmentation

Image Credit: NERSC

CLASSIFICATION Example: Classifying Land Use

UC Merced Land Use Database

36
ONE-HOT ENCODING Input: Pixels, Output: One-hot encoding

INPUT: PIXEL VALUES

https://blog.carbonteq.com/practical-image-recognition-with-tensorflow/

OUTPUT: ONE-HOT VECTOR

IMAGES ARE POINTS, WITH MANY DIMENSIONS

OUT: 1-hot vector

FULLY CONNECTED NETWORKS AND IMAGES DON'T MIX

TRANSLATIONAL EQUIVARIANCE Objects in nature look the same from place to place

WHAT IS A CONVOLUTION? A small matrix transformation, applied at each point of the image

📀 NVIDIA.

41

CONVOLUTION EXAMPLE: SOBEL FILTER

Image source: https://en.wikipedia.org/wiki/Sobel_operator

 $G = \sqrt{G_x^2 + G_y^2}$

CONVOLUTION EXAMPLE: SOBEL FILTER

Image source: https://en.wikipedia.org/wiki/Sobel_operator

 $G = \sqrt{G_x^2 + G_y^2}$

CLASSIFICATION

https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

LENET-5

(1988) Yann LeCun. Hand written recognition. 60k parameters.

PROC. OF THE IEEE, NOVEMBER 1998

Gradient-Based Learning Applied to Document Recognition

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner

<mark> NVIDIA</mark>.

IMAGENET ILSVR COMPETITION Large Scale Visual Recognition Competition (2010-2017)

https://en.wikipedia.org/wiki/ImageNet

ALEXNET

(2012): Krizevsky, Sutskever, Hinton. ImageNet winner.

ImageNet Classification with Deep Convolutional Neural Networks

48

VGG-16

2014. ImageNet runner up. Simple, clean architecture.

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan^{*} & Andrew Zisserman⁺

Visual Geometry Group, Department of Engineering Science, University of Oxford

224 x 224 x 3 224 x 224 x 64

Conv 1-1

Conv 1-2

Pooing

Conv 2-1

Conv 2-2

Pooing

Conv 3-1

Conv 3-2

Conv 3-3

Pooing

Conv 4-1

Conv 4-2

Conv 4-3

Pooing

Conv 5-1

Conv 5-2

Conv 5-3

Pooing

Dense

Dense

Dense

1 x 1 x 4096 1 x 1 x 1000

INCEPTION-V1 (GOOGLENET) 2014. Train different size convolutions in parallel

FULLY CONVOLUTIONAL NETWORKS (FCN) 2015: Convert fully connect layers into convolutions of the same size

Fully Convolutional Networks for Semantic Segmentation

RESNETS

MODELING TRENDS: DEEPER AND LARGER

PROBLEM: VANISHING GRADIENTS Error signal decays exponentially as it propagates backward through the network

https://www.arxiv-vanity.com/papers/1512.03385/

NVIDIA

PROBLEM: THE MISSING IDENTITY 2015: Neural nets had a hard time learning the identity function!

8

55

🗼 NVIDIA

RESNETS AND SKIP CONNECTIONS (aka Highway Networks)

ADD THE INPUT TO OUTPUT

https://arxiv.org/pdf/1512.03385.pdf

DRAMTICALLY SIMPLIFIES THE LOSS LANDSCAPE

https://arxiv.org/abs/1712.09913 https://jithinjk.github.io/blog/nn_loss_visualized.md.html

RESNET-50

2015 Microsoft Research. 50 Layers, 23M params.

Deep Residual Learning for Image Recognition Xiangyu Zhang Kaiming He Shaoqing Ren Microsoft Research Plain 34-layer plain 256, /2 64. /2 128, / , 128 1, 128 1, 128 1, 256 , 256 , 256 , 128 , 128 128 , 256 v, 64 2 3x3 cc BX3 CC 1x7 co 8 3x3 IX3 C IX3 COI EX ResNet 34-layer residual 64, /2 128 , 128 128 128 7×7 co SX3 2

https://arxiv.org/pdf/1409.1556.pdf

Jian Sun

Densely Connected Convolutional Networks

NEURAL-ODES 2018

Neural Ordinary Differential Equations

(a) Recurrent Neural Network

(b) Latent Neural Ordinary Differential Equation

- Ground Truth
- Observation
- Prediction
- Extrapolation

(c) Latent Trajectories

ENCODER-DECODERS

ENCODERS AND DECODERS Networks connecting high and low dimensional spaces

$\mathsf{CLASSIFIER:} \mathsf{IMAGE} \to \mathsf{CLASS} \mathsf{ENCODER}$

ENCODER

ONE-HOT VECTOR

- •
- Storm Cat 1 Cat 2 Cat 3

Low

- Cat 4
- Cat 5
- **Other**

IMAGE TO IMAGE

Encoder-Decoder network with Images at both ends

SEGMENTATION

http://liu.diva-portal.org/smash/get/diva2:1182913/FULLTEXT01.pdf

DEPTH PREDICTION

https://research.cs.cornell.edu/megadepth/

VOLUME TO VOLUME Input and Output can have 1,2,3 spatial dimensions or more

DISPLACEMENT FIELD

D3M: Learning to Predict the Cosmological Structure Formation

https://arxiv.org/pdf/1811.06533.pdf

DENSITY FIELD

AUTOENCODER

Adaptive Data Compression and Noise Removal

WHY IS MY DECODER OUTPUT FUZZY? Decoded Output is Not Unique

One class represents many instances

66

<mark> NVIDIA</mark>

UNET (2015) Nested encoder-decoders at multiple spatial scales

DEEPLAB V3+

Another encoder decoder design for accurate segmentation

Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam

MASKED CONVOLUTIONS AND INPAINTING

PARTIAL CONVLUTIONS Convolutions that ignore missing or invalid data

Data

https://www.nature.com/articles/s41561-020-0582-5

Masked Convolution Operation

otherwise

https://arxiv.org/abs/1804.07723

📀 NVIDIA.

TASK: INPAINTING Repair an image that has missing data

Image Inpainting for Irregular Holes Using Partial Convolutions

Guilin Liu Fitsum A. Reda Kevin J. Shih Ting-Chun Wang Andrew Tao Bryan Catanzaro **NVIDIA** Corporation

INPAINTING APPLICATIONS Fill in missing observations, or remove unwanted objects

GOES-17: Repair Missing Data

Remove Clouds, Haze, Shadows

TRANSFER LEARNING FOR INPAINTING Train on model data to repair observational data

Artificial intelligence reconstructs missing climate information

Christopher Kadow^{1,2}², David Matthew Hall³ and Uwe Ulbrich²

https://www.nature.com/articles/s41561-020-0582-5

GENERATIVE MODELS

GENERATIVE MODELS Generate Specific Examples from a Learned Distribution

A Style-Based Generator Architecture for Generative Adversarial Networks https://thispersondoesnotexist.com https://arxiv.org/pdf/1812.04948.pdf

GENERATE NEW EXAMPLES You can generate a new example of nearly any type of data

SAMPLE GENERATION

Neural Rhapsody maia (2019) inspired by Wolfgang Mozart (1756-1791) J = 120(**\$**\$\$\$\$\$

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. "By the time we reached the top

VAE: VARIATIONAL AUTOENCODER An autoencoder that learns Gaussian Distributions

INPUT

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

GENERATED EXAMPLE

GAN: GENERATIVE ADVERSARIAL NETWORK

A trick for training a decoder to produce samples indistinguishable from real ones

https://en.wikipedia.org/wiki/Generative_adversarial_network

CONDITIONAL GAN Generate Synthetic Images, conditioned upon the input

DeepFaceDrawing: Deep Generation of Face Images from Sketches https://arxiv.org/pdf/2006.01047.pdf

79

CONDITIONAL GAN EXAMPLE Map from satellite observations to model variables

GOES-15 BAND 3

GENERATED WATER VAPOR

doi:10.5065/D6BZ64XQ

TARGET: GFS WATER VAPOR

RNNS, ATTENTION, AND TRANSFORMERS

ATTENTION AND TRANSFORMERS

RECURRENT NEURAL NETS (1986) Neural networks for sequences

RNN, Unrolled over time

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

LSTM (1997) Long Short-term Memory Units

LONG SHORT-TERM MEMORY

NEURAL COMPUTATION 9(8):1735-1780, 1997

Sepp Hochreiter

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Jürgen Schmidhuber

SEQUENCE TO SEQUENCE (2014) Encoder-decoder pattern for sequences

Sequence to Sequence Learning with Neural Networks

Ilya Sutskever Google

Oriol Vinyals Google

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

Quoc V. Le Google

85

ATTENTION

Adjustable weights based on context

https://www.datasciencecentral.com/profiles/blogs/seq2seq https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

ATTENTION ENCODER-DECODER A more accurate way to translate long sequences

S_3 *s*₂ decoder decoder decoder decoder С c_1 c_2 c_3 encoder encoder encoder encoder

RNN

https://medium.com/datadriveninvestor/attention-in-rnns-321fbcd64f05

RNN + ATTENTION

THE TRANSFORMER (2017) Attention is all you need!

Attention Is All You Need

http://jalammar.github.io/illustrated-transformer/

https://arxiv.org/abs/1706.03762

Figure 1: The Transformer - model architecture.

📀 NVIDIA.

GPT AND BERT

DETNET

(2020) End-to-end object detection with transformers

End-to-End Object Detection with Transformers

Nicolas Carion^{*}, Francisco Massa^{*}, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko

AUTO ML Automating the work of the data scientist

https://docs.microsoft.com/en-us/azure/machine-learning/concept-automated-ml

NEURAL ARCHITECTURE SEARCH

Automating model design and selection

https://heartbeat.fritz.ai/research-guide-for-neural-architecture-search-b250c5b1b2e5

NAS Google Brain 2016

NEURAL ARCHITECTURE SEARCH WITH **REINFORCEMENT LEARNING**

Barret Zoph^{*}, Quoc V. Le

Google Brain

EFFICIENT NAS

2018 Google Brain, CMU, Stanford

Efficient Neural Architecture Search via Parameter Sharing

Hieu Pham^{*12} Melody Y. Guan^{*3} Barret Zoph¹ Quoc V. Le¹ Jeff Dean¹

GRAPH SEARCH SPACE

RNN CONTROLLER

DARTS 2019 Google DeepMind, CMU

DARTS: DIFFERENTIABLE ARCHITECTURE SEARCH

Hanxiao Liu* CMU hanxiaol@cs.cmu.com Karen Simonyan DeepMind simonyan@google.com

Figure 1: An overview of DARTS: (a) Operations on the edges are initially unknown. (b) Continuous relaxation of the search space by placing a mixture of candidate operations on each edge. (c) Joint optimization of the mixing probabilities and the network weights by solving a bilevel optimization problem. (d) Inducing the final architecture from the learned mixing probabilities.

Yiming Yang CMU yiming@cs.cmu.edu

SUMMARY

- Eventually AutoML ar obsolete
- Many models in the model zoo
- Model architectures are task specific
- Encode what you know, learn the rest
- \circ Use pretrained models when you can
- \circ Use transfer learning when you can
- AI changes very quickly. Use Arxiv sanity to keep up.

dhall@nvidia.com

Eventually AutoML and NAS may make model selection