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NN Interpretation – Initial Thoughts

Gaining insights into an NN is 

• An iterative, scientist-driven discovery process, 

• Driven by old fashioned methods of experimental design, and 
hypothesis generation and testing, 

• NN visualization tools simply provide additional tools to assist
this process (but they are not driving this process).

So far there is no such thing as an automated, one-size fits-all 
visualization method. And there might never be.

 Earth scientist always remains crucial in the entire process.

 You will see that in the examples.



Acronyms

ANN = (Artificial) Neural Network = NN

Heat map = Heatmap = Attribution map  (used interchangeably)

XAI = Explainable AI

= common term used by computer scientists to denote

interpretation/visualization methods for AI algorithms.



NN Interpretation Tools – Part 2

Two methods beyond what Amy McGovern just 
covered in Part 1:

1) Layer-Wise Relevance Propagation (LRP):

A method for identifying strategies the NN uses by 
looking into decision process for specific samples.

2) Receptive Field of CNNs:

A property of NN architecture – helpful for NN 
architecture selection and interpretation.

Let’s get started with #1 …



Motivation

ANNs

• Have emerged as promising tool in countless earth science related 
applications.

• Perform amazingly well at many complex tasks.

• ANNs are generally treated as black box: it’s considered too difficult a 
task to understand how they work.

• Why is that a problem?
If ANNs work fine, why do we care how they work?



Example: Problematic strategies

Insights from a study of strategies utilized by a neural network.

Reference (also source of images on the following slides):
Lapuschkin et al. “Unmasking Clever Hans Predictors and Assessing What Machines Really 
Learn.” Nature Communications, vol. 10, no. 1, Mar. 2019, p. 1096, doi:10.1038/s41467-019-
08987-4.

Task:

• Given an ANN trained for object recognition in images.

• Decide whether there is a horse in a given image.  

Methodology used in that paper:

• Step 1: Train neural network to decide whether there’s a horse.

• Step 2: Apply visualization technique (LRP) to analyze network’s strategies.

The following slides provide two things:

1. An example of problematic strategies an ANN might use.

2. A way to identify such strategies: visualization in action.

Inventors of 
LRP method



Detecting horses – Strategy 1 of algorithm

Strategy 1: What does ANN detect in these images?

Input Images

Attribution maps (from LRP):
In red is where the NN is 
looking to decide whether 
there is a horse.

Red areas:     increase confidence
Blue areas:    decrease confidence
Black areas:  not useful

Attribution maps (aka heat maps)



Strategy 1: What does ANN detect?  MAINLY PARTS OF HORSES.  Great!

Input Images

Detecting horses – Strategy 1 of algorithm

Attribution maps:
In red is where the NN is 
looking to decide whether 
there is a horse.

Red areas:     increase confidence
Blue areas:    decrease confidence
Black areas:  not useful



Strategy 2: What does ANN detect in these images?   

Detecting horses – Strategy 2 of algorithm

Input Images

This is where the 
NN is looking
to decide.



Strategy 2: What does ANN detect?   
Poles = items correlated with horses.  

Not a great strategy.  
What happens for an image containing poles but no horse?

False positive!

Input Images

This is where the 
NN is looking
to decide.

Detecting horses – Strategy 2 of algorithm



Strategy 3: What does ANN detect in this image?   

Detecting horses – Strategy 3 of algorithm



Look at attribution 
map for a hint!

Strategy 3: What does ANN detect in this image?   

Detecting horses – Strategy 3 of algorithm



Attribution maps 
as hint.

Strategy 3: What does ANN detect in these images?
The html tags!  Definitely do NOT want this strategy!

There are no html tags in the real world!  Would result in false negatives.   

Detecting horses – Strategy 3 of algorithm



What happened?

Don’t blame the algorithm – it did exactly what it was supposed to do:
• Algorithm correctly learned correlations present in the data to achieve its 

objective.
• But some of the correlations were not representative of correlations in real 

world (e.g., poles can occur without horse, no html tags in real world!).
• Can call this the “Inadvertent-correlation-present-only-in-data” problem.

→ Algorithm seems to perform well, but its reasoning does not generalize to 
the world.

• Conclusion: Using ANN as black box can be a problem.

But also learned:
• Visualization method proved useful to detect correct & incorrect strategies.

• Can we use such methods to find strategies learned by ANNs trained for 
earth science applications?



How visualization methods can help

Using visualization tools can:
Provide information on ANN’s reasoning, e.g., in form of attribution 
maps, as shown above.

In turn that provides:
1. Increased trust in ANN – you’re more likely to use a method you 

understand.
2. Important information for design of ANNs, enables physics-guided 

machine learning.
3. Provides new role for ML: visualization output can even be used to 

discover new science! (See REFs at end of this presentation).



Visualization – Type A: Feature Visualization

Philosophy: Seek to understand all internal components of ANN.

Seek to understand the meaning of all intermediate (blue) 

nodes.



Method 2: Generate synthetic image that 
maximizes activation of considered neuron.
• Uses built-in derivatives + gradient descent 

tools of ANN framework.  Easy to do.
• Start with random image or input sample.
• Gradient descent to max. neuron activation.

Recommended reading/video: 
• Olah, C., Mordvintsev, A., & Schubert, L. (2017). Feature 

visualization. Distill, 2(11), e7.  LINK TO PAPER
• CVPR 2020 Tutorial on Interpretable Machine Learning for 

Computer Vision, June 15, 2020. LINK TO VIDEO
See Lecture #4: Christopher Olah, Introduction to Circuits in 
CNNs.

Related topic - backward optimization by Amy:
• McGovern, Amy, et al. "Making the black box more 

transparent: Understanding the physical implications of 
machine learning." Bulletin of the American Meteorological 
Society 100.11 (2019): 2175-2199.

Method 1: Identify training samples that yield 
high activation of that neuron.

• But what in the image triggered activation -
the building or the sky?

• Strategies might still not be obvious.
• Nevertheless very useful method. 
• Excellent application paper: 

Xie, M., Jean, N., Burke, M., Lobell, D., & Ermon, S. (2016, 
March). “Transfer learning from deep features for remote 
sensing and poverty mapping”. In Thirtieth AAAI conference 
on artificial intelligence.  LINK TO PAPER .

Visualization – Type A

Visualizing individual neurons – two sample methods:

https://distill.pub/2017/feature-visualization/
https://interpretablevision.github.io/
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12196/12181


Visualization – Type A

We know that layers in a CNN represent 
increasingly complex spatial patterns, 
in increasing size.

But – those types of patterns tend to be 
more pronounced for cats and dogs than 
for atmospheric rivers and cold fronts, 
because we deal with
• Fuzzy boundaries,
• Few distinct parts, such as eyes, ears 

and noses.

That’s why we often prefer Type B for 
earth science applications.
So what’s Type B?

Image source:  Garg, D., & Kotecha, K. (2018). Object Detection from 
Video Sequences Using Deep Learning: An Overview. In Advanced 
Computing and Communication Technologies (pp. 137-148).



Type B: Attribution / Explaining Decisions

Philosophy: Understand the ANN’s overall decision making for specific input.

• Seek to understand the reasoning of entire NN algorithm - for a specific input.
• Study overall input-output function of ANN, y = f(x), where x = input, y = output.
• HERE: Do NOT worry about meaning of intermediate (blue) nodes.

yx

y = f(x)



Type B:  Common Means of explanation = Heat maps
(aka Attribution maps)

Question answered in this example:  

Which pixels of the input image are most important for NN to decide 
that this is a shark?

Example: Visualization to explain classification of a specific image

“heat map”

Source:  www.heatmapping.org.        

Heatmaps indicate:
• Regions in an input sample that are 

key for decision/estimate made by NN 
for this input.

http://www.heatmapping.org/


Heat maps / attribution maps

• Heat maps can be calculated with many different algorithms.

• Examples (see also Amy’s talk this morning): 
– Saliency maps

– GradCAM

– Occlusion Sensitivity

– Layer-Wise Relevance Propagation (LRP)

– many others.

• New methods are being developed as we speak.

• Each type of heatmap has different interpretation.

• Each method has its pros and cons.  

• Not every method works for every architecture.

• Choice depends on application and question you’re trying to answer. 

• The purpose of this presentation

– Is not to promote LRP as “the best method”.

– Is to show what visualization methods in general can do for the community 
– using LRP as an example.

• We use images as input here for illustration, but input can be anything.

• Heatmap = overlay for all input elements – regardless of input format.

Visualization 
toolboxes
available!



Visualization toolboxes

Package 1:  iNNvestigate (NN + investigate = iNNvestigate)

• Available at www.heatmapping.org 
• Implementations: pytorch & TF/Keras (TF2.0 version coming soon)
• Includes LRP methods.

These are “attribution” methods for image classification:
identify what the network finds important in input image for certain task

http://www.heatmapping.org/


Visualization toolboxes

Package 2:  tf-explain

Available at https://tf-explain.readthedocs.io/en/latest/.  
Implementation:  Tensorflow (Compatible with TF2.0!)

Sample result for network VGG16:

Input Activation 
visualizations

Occlusion
sensitivity

Grad CAM SmoothGrad

More toolboxes exist.

https://tf-explain.readthedocs.io/en/latest/


Relevance propagation for LRP

LRP = Layer-wise Relevance 
Propagation

How it works:
1. Feed in input sample.

Regular forward pass of 
ANN → calculates output

2. New backward pass to 
calculate relevance from 
layer to layer.

Image Source: 
Montavon et al. (2018)

Backward pass: 
Need a new type of rule to distribute relevance.
This does not use the usual back propagation.
Rule: next slide – details in Montavon et al. (2018).



The 𝜶𝜷 −rule for LRP

Simplest formula for LRP backward relevance propagation (“alpha-beta 
rule”):

𝛼 and 𝛽 are tuning parameters:
𝛼 = how much positive attribution allowed
𝛽 = how much negative attribution allowed

• 𝛼 allows manual control of positive vs. negative attribution.
• Common choice: 𝛼 = 1, 𝛽 = 0 --> only positive attribution.

• For details see Montavon et al. (2018).

𝑧𝑖,𝑗 = 𝑤𝑖,𝑗 ∗ 𝑎𝑐𝑡𝑖𝑣𝑗
𝑧𝑖,𝑗

+= positive part

𝑧𝑖,𝑗
-= negative part

𝑧𝑗
+ = ∑i 𝑧𝑖,𝑗

+

𝑎𝑛𝑑 𝛽 = 1 – 𝛼



Some comments on LRP

• We have found LRP to be extremely useful for many of our applications.

• How-to tips on LRP use:  See Montavon et al. (2018)

• Biggest limitation: 
LRP implementation only available for simple NN architectures so far, but 
extensions being developed as we speak. 



Application 1

• Yoonjin Lee (ATS), Chris Kummerow (ATS) at CSU.

• Task: Detect convection from satellite images.

Why is it important to detect convection?

• Convection releases heat. 

• Determine locations of convection in satellite images  feed that info into 
numerical weather prediction (NWP) model in real time to improve forecast.

• This is a Data Assimilation task:  
Use current observations to adjust weather model in real time.

• Potentially high impact area for ML. 

Yoonjin Lee
Ph.D. student

(Kummerow group)
Lee et al., 2020.



GOES-16 band 2  imagery   (30-Second, 0.5 km)
West Texas – 28 Mar. 2017

Look for 
convection: 
Wherever clouds 
have high 
brightness and are 
“bubbling”. 

Easy to see with 
our eyes from 
animation!

Best way to detect 
with ML?

Video – Courtesy 
of CIRA

(Animation)



Q1: How do humans detect convection?

Look for clouds with combination of 

1. High brightness;

2. Texture: “bubbling”.   Especially apparent in videos. 

Next:   Trained an ANN to detect convection. 

Q2: How does the ANN detect convection?

First, discuss set-up for ANN:

• Input: Sequence of five image patches, 2 minutes apart

• Architecture: CNN - Typical image classification network

• Output: Two output neurons representing two classes:

i) There is convection in image sequence

ii) There is no convection in image sequence.

Detecting convection

Visualization map of Conv3D results

Sequence of 
five images 

(2 min apart)

Visualization: 
Where does ANN 

look for convection?

Visualization map of Conv3D results



We hope to answer the following questions:

1. Is our ANN paying attention to all the clues we know are important?  If not, 
there’s probably room for improvement.

2. Is our ANN using faulty reasoning?  Example: using correlation present in 
data, but not representative of real world. 

3. In short, do we agree with the strategies used by the ANN?

Method used:  Layer-wise relevance propagation (LRP)

Step 1:  Train the ANN.

Step 2:  Freeze the ANN → Weights and biases are now fixed.

Step 3:  Feed specific input sample into ANN to get ANN output. 

Step 4:  Apply LRP analysis for this specific sample. 

 tells us which part/area of input sample is important for this ANN 
output.

Q: How is ANN detecting convection?



LRP result for our “convection ANN”

Visualization map of Conv3D results

Sequence of 
five images 

(2 min apart)

Visualization: 
Where does ANN 

look for convection?

Visualization map of Conv3D results

Apply LRP  –>  Where is ANN looking?

Input:
Sequence of 
five images 

Visualization map of Conv3D results

Sequence of 
five images 

(2 min apart)

Visualization: 
Where does ANN 

look for convection?

Visualization map of Conv3D results

Visual analysis of heatmaps by domain expert tells us: 
This ANN looks primarily for high brightness, does not focus on texture! 

 Lesson:  ANN not using all information, missing texture signal.  Sub-optimal.  
 Explore methods that force ANN to focus on texture, too.
 Ex.: Pre-train on samples that mainly have texture signal;     

reformulate as segmentation task - to give ANN feedback on where to look. 

Key point:  Visualization tools → We can “see” better what’s working well / badly.
→ Brings ANN reasoning back to space of physics and expert knowledge!



Input:   GOES  Channels  C07, C09, C13, GLM.       Output:  MRMS (radar).

C07

Application 2:
Generating synthetic radar images from GOES imagery

C09 C13

GLM
(lightning)

MRMS - observedMRMS - estimate

Input:

Output:

Motivation: GOES imagery is available in all of CONUS, but MRMS is not.

Output 
image

Input 
Image

Input 
Image

Input 
Image

Input 
Image

4 channels

NN

Kyle Hilburn



Application 2 – NN architecture
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Skip connections:  add high-resolution images from earlier layers as additional input to deeper layers 

Unet architecture

Encoder-Decoder architecture
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Feature Interpretation layers
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CNN architecture for Classification

Output
label

C = convolution layer
P = pooling layer (downsampling)
U = upsampling

Numbers:  size of filters/masks

Input:   GOES channels Output: MRMS estimate



Question:  How does NN know when to create large MRMS estimates?
Method:    Select examples where MRMS estimate is high.  Where is NN looking (LRP)?  

Inputs: MRMS truth

Gradient 
of inputs:

LRP for one
output 
pixel 

LRP if 
GLM signal 
erased

Strategy 1: Presence of lightning triggers high MRMS values.  Lightning = strongest trigger. 
Strategy 2: In no lightning NN focuses on locations with strong gradients: cloud boundaries.

LRP yields 2 strategies for creating large MRMS estimates:

MRMS est.

MRMS est.



LRP vs. Saliency heatmaps
Sample 80, x=40, y=125

Area of high brightness
(dense area of cloud)

Area of large gradient
(cloud boundary)

(k) MRMS true (l) MRMS estimate(g) GOES – CH 7 (h) GOES – CH 9 (i) GOES – CH 13 (j) GOES – GLM

(m) Gradient – CH 7 (n) Gradient – CH 9 (o) Gradient – CH 13 (p) Gradient – GLM

(q) LRP – CH 7 (r) LRP – CH 9 (s) LRP – CH 13 (t) LRP – GLM

(e) MRMS true(a) GOES – CH 7 (b) GOES – CH 9 (c) GOES – CH 13 (d) GOES – GLM

Input & Output - Original size

Input & Output - Zoomed into neighborhood of pixel of interest: (40,125)

(f) MRMS estimate

(u) Saliency – CH 7 (v) Saliency – CH 9 (w) Saliency – CH 13 (x) Saliency – GLM

Simple gradient 
approximation 
of input channels
(using Sobel
operator)

NN Heatmap:
LRP

NN Heatmap:
Saliency

Neural Network heatmaps LRP found 3rd strategy: 
Strategy #3: Extremely dense 
areas of clouds trigger high 
MRMS values.

Saliency method: 
Only identified one strategy 
(lightning) – and not even concisely.

REFs:
• Hilburn et al. (2020) 

Ebert-Uphoff and 
• Hilburn (2020)



Application 3: XAI for Science Discovery

Use LRP and other tools to discover new science.

Example: 
Find indicator patterns of climate change: 
What are the spatial patterns (in temp or precip) 
most indicative of climate change?

Why use AI for this purpose?    
1) Great at picking up and utilizing spatial patterns.  
2) Can use visualization tools to look at those patterns.

References (XAI for science discovery):  

Toms, B. A., Barnes, E. A., & Ebert-Uphoff, I. Physically Interpretable Neural Networks for the Geosciences: 
Applications to Earth System Variability, 2020 (preprint).

Barnes, E. A., Hurrell, J. W., Ebert‐Uphoff, I., Anderson, C., & Anderson, D., Viewing forced climate patterns 
through an AI Lens. Geophysical Research Letters, 2019.

Barnes, E. A., Toms, B., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C., & Anderson, D. Indicator patterns of 
forced change learned by an artificial neural network, 2020 (preprint).

Elizabeth BarnesBen Toms

https://arxiv.org/abs/1912.01752
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL084944
https://arxiv.org/abs/2005.12322


Last topic:  Receptive Fields in CNNs

We know that layers in a CNN represent 
increasingly complex spatial patterns, 
in increasing size.

For many earth science applications 
it’s hard to identify such specific patterns
(b/c of fuzzy boundaries, no 
ears/eyes/etc.).

• But what about size of features?
• Can we say something about the size 

of meteorological features that each 
layer can recognize?

• Yes!  
• That’s called the receptive field!

Image source:  Garg, D., & Kotecha, K. (2018). Object Detection from 
Video Sequences Using Deep Learning: An Overview. In Advanced 
Computing and Communication Technologies (pp. 137-148).



Last topic:  Receptive Fields in CNNs

Question:  How big exactly is spatial context at each layer of this NN?
Answer:     Determine “receptive field (RF)” of each layer.

Then:  Can roughly match those RF sizes to size of meteorological 
phenomena we want to detect → architecture starting point.

Consider a “purely convolutional” NN:
• Layer types:  convolution, pooling, upsampling
• No fully-connected (dense) layers allowed.



Receptive Field (RF)

Receptive field
in input layer

(Layer 0)
Pixel in 

deeper layer
(Layer k)

Receptive field of Layer k:
1. Consider a single pixel in Layer k (red cross).  
2. Determine the smallest box size in input layer (red box) that contains all pixels 

connected in the NN to that pixel in Layer k.

 RF = Which pixels in input image can affect the pixel (red cross) in Layer k?
 RF = Max size of any spatial pattern in original input that Layer k can recognize.



RF for Application 2
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Suggested caption: Th eo retica l Re cep tive  F ie ld  fo r G R EM LIN  m o d el v isu a lized  fo r in p u t C H  1 3  (lo n g w a ve  IR )
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FIG. 3. Theoretical Receptive Field (TRF) of all layers of GREMLIN model visualized for Sample #68 and input channel 13 (longwave IR).

The numbers on top of each image denote the TRF size in terms of pixels in the input sample. The red square in each image indicates the TRF

corresponding to acentral pixel in theoutput map of aconsidered layer. Thus the red square represents an upper bound on the spatial context in an

input image that the NN can utilize in each of the layers. The input image has 256x256 pixels and the the final layer has a TRF of 48x48 pixels.

Note that adding skip connections to the model (U-net) would not change the TRF boundaries.

(a) Untrained b) Trained

FIG. 4. Approximation of Effective Receptive Field (ERF) for fi-

nal output layer of GREMLIN model (a) before training (0 epochs), i.e.

using random weights, and (b) after training (100 epochs). This ap-

proximation iscalculated with SmoothGrad (Smilkov et al. 2017) using

validation sample80 and acentral output pixel, seeHilburn et al. (2020)

for details. Note that theERF for theuntrained model ismuch moredif-

fuse, while the trained model for this sample and location ismuch more

focused at the center.

the connection is obvious: if meteorologists can provide a

rough estimate of spatial context that they think is impor-

tant, then the NN architecture should be chosen to have a

TRF that is at least asbig, preferably already at the end of

theencoder layer. The samereasoning applies for classifi-

cation architectures, in which case one considers the TRF

size at the end of the feature extraction layers. That TRF

sizedetermines themaximal spatial context of thefeatures

used in classification. As theERF tends to besmaller than

theTRF, the initial architectureguess istypically followed

by some trial-and-error experiments with architectures of

higher TRF size. Beyond architecture design, wefind cal-

culating the TRF of the different layers (Fig. 3) very help-

ful to understand the spatial context - and thus the meteo-

rological phenomena - the NN model is able to utilize.

3. Using Per formance Measures for NN Tuning

The meteorological community has developed many

tools to evaluate the performance of algorithms used for

weather and climate tasks. It seems obvious to apply such

meteorological performance measures also to NN algo-

rithms whenever they are used for the same tasks. How-

ever that is not always happening. The likely reason for

that effect is likely the misalignment between the needs

of two disciplines, computer science and meteorology.

NN methods areusually developed by computer scientists

for computer science application, which come with their

own performance measures. NN literature thus illustrate

NN methodswith computer science-oriented performance

measuresand NN softwarepackagesincludethem aswell.

Visualization of Theoretical Receptive Field (TRF)

• Input image:  256x256 pixels
• Red box = size of spatial context at each layer
• TRF grows to 48x48 pixels.
• TRF = max spatial context of layer.



Effective Receptive Field (ERF)
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FIG. 3. Theoretical Receptive Field (TRF) of all layers of GREMLIN model visualized for Sample #68 and input channel 13 (longwave IR).

The numbers on top of each image denote the TRF size in terms of pixels in the input sample. The red square in each image indicates the TRF

corresponding to acentral pixel in theoutput map of aconsidered layer. Thus the red square represents an upper bound on the spatial context in an

input image that the NN can utilize in each of the layers. The input image has 256x256 pixels and the the final layer has a TRF of 48x48 pixels.

Note that adding skip connections to the model (U-net) would not change the TRF boundaries.
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FIG. 4. Approximation of Effective Receptive Field (ERF) for fi-

nal output layer of GREMLIN model (a) before training (0 epochs), i.e.

using random weights, and (b) after training (100 epochs). This ap-

proximation iscalculated with SmoothGrad (Smilkov et al. 2017) using

validation sample80 and acentral output pixel, seeHilburn et al. (2020)

for details. Notethat theERF for theuntrained model ismuch moredif-

fuse, while the trained model for this sample and location ismuch more

focused at the center.

theconnection is obvious: if meteorologists can provide a

rough estimate of spatial context that they think is impor-

tant, then the NN architecture should be chosen to have a

TRF that is at least asbig, preferably already at the end of

theencoder layer. Thesamereasoning applies for classifi-

cation architectures, in which case one considers the TRF

size at the end of the feature extraction layers. That TRF

sizedetermines themaximal spatial context of thefeatures

used in classification. As theERF tends to besmaller than

theTRF, the initial architectureguess is typically followed

by some trial-and-error experiments with architectures of

higher TRF size. Beyond architecture design, wefind cal-

culating the TRF of the different layers (Fig. 3) very help-

ful to understand the spatial context - and thus the meteo-

rological phenomena - the NN model is able to utilize.

3. Using Per formance Measures for NN Tuning

The meteorological community has developed many

tools to evaluate the performance of algorithms used for

weather and climate tasks. It seems obvious to apply such

meteorological performance measures also to NN algo-

rithms whenever they are used for the same tasks. How-

ever that is not always happening. The likely reason for

that effect is likely the misalignment between the needs

of two disciplines, computer science and meteorology.

NN methods are usually developed by computer scientists

for computer science application, which come with their

own performance measures. NN literature thus illustrate

NN methodswith computer science-oriented performance

measuresand NN softwarepackagesincludethem aswell.
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cation architectures, in which case one considers the TRF

size at the end of the feature extraction layers. That TRF

sizedetermines themaximal spatial context of thefeatures

used in classification. As theERF tends to besmaller than
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by some trial-and-error experiments with architectures of

higher TRF size. Beyond architecture design, wefind cal-

culating the TRF of the different layers (Fig. 3) very help-

ful to understand the spatial context - and thus the meteo-

rological phenomena - the NN model is able to utilize.

3. Using Per formance Measures for NN Tuning

The meteorological community has developed many

tools to evaluate the performance of algorithms used for

weather and climate tasks. It seems obvious to apply such

meteorological performance measures also to NN algo-

rithms whenever they are used for the same tasks. How-

ever that is not always happening. The likely reason for

that effect is likely the misalignment between the needs

of two disciplines, computer science and meteorology.

NN methods areusually developed by computer scientists

for computer science application, which come with their

own performance measures. NN literature thus illustrate

NN methodswith computer science-oriented performance

measuresand NN softwarepackagesincludethem aswell.

Theoretical receptive field (TRF):
• Provides max bounding box
• But impact is not uniform within 

box.

 Effective receptive field (ERF)

• Roughly Gaussian distribution
• Changes during training (see 

image on right).
• Here: getting more focused. 

TRF

ERF



Effective Receptive Field (ERF)
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for details. Note that theERF for theuntrained model ismuch moredif-

fuse, while the trained model for this sample and location ismuch more
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the connection is obvious: if meteorologists can provide a

rough estimate of spatial context that they think is impor-

tant, then the NN architecture should be chosen to have a

TRF that is at least asbig, preferably already at the end of

theencoder layer. The samereasoning applies for classifi-

cation architectures, in which case one considers the TRF

size at the end of the feature extraction layers. That TRF

sizedetermines themaximal spatial context of thefeatures

used in classification. As theERF tends to besmaller than
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culating the TRF of the different layers (Fig. 3) very help-

ful to understand the spatial context - and thus the meteo-
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3. Using Per formance Measures for NN Tuning

The meteorological community has developed many

tools to evaluate the performance of algorithms used for

weather and climate tasks. It seems obvious to apply such

meteorological performance measures also to NN algo-

rithms whenever they are used for the same tasks. How-

ever that is not always happening. The likely reason for
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Theoretical receptive field (TRF):
• Provides max bounding box
• Impact is not uniform within box.

TRF

Key lesson:  Always makes sure your theoretical receptive field (TRF) 
is big enough to capture meteorological features.



Receptive field when there are dense layers

Typical architecture for image classification (dense layers at end):

Feature extraction Feature interpretation
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Skip connections:  add high-resolution images from earlier layers as additional input to deeper layers 

Unet architecture

Encoder-Decoder architecture
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Architecture we just looked at (no dense layer):

Encoder Decoder



Architecture for classification

Function: 
• This block has same function as 

encoder layer in image translation!
• Extract features from image.

Function:  
• Interpret presence of detected 

features.
• Assign corresponding output label.

What about receptive field?
• Apply at output layer of blue block:

Provides size of features that can be detected in input space.
Rest of the network just interprets those features.

Once you reach a dense layer:  
• Receptive field = entire input space. 
• So analyze feature size before first dense layer instead (as indicated above).



NN Interpretation – Final Thoughts

Gaining insights into an NN is 

• An iterative, scientist-driven discovery process, 

• Driven by old fashioned methods of experimental design, and 
hypothesis generation and testing, 

• NN visualization tools simply provide additional tools to assist
this process (but they are not driving this process).

So far there is no such thing as an automated, one-size fits-all 
visualization method. And there might never be.

 Earth scientist always remains crucial in the entire process.



Black Box

Tools for visualization + 
interpretation of ML methods

Put box
into tool Box getting 

more 
transparent

Inside 
view

Inside 
view

Put backpack into
X ray scanner

Not perfect, but better 
than a black box.

ANNs are not a black box anymore
How much can visualization help?



Thank you!

Remaining slides contain links to toolboxes and lots of REFs sorted by topic.

Questions?



Some Available software

• “Keras explanation toolbox” - aka “iNNvestigate neural networks”
• What: LRP and other methods 
• For: Keras with Tensorflow backend
• Level of development support: high
• Where: www.Heatmapping.org

• “LRP toolbox”
• What: LRP only
• For: Tensorflow
• Level of development support: decreasing
• Where: www.Heatmapping.org

• “LUCID”
• What: Lots of feature visualization methods.  Implements method 

discussed by Olah et al. (2017)
• For: Tensorflow
• Where: https://github.com/tensorflow/lucid

http://www.heatmapping.org/
http://www.heatmaping.org/
https://github.com/tensorflow/lucid
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Seminal article - written for climate/weather community:
McGovern A, Lagerquist R, Gagne DJ, Jergensen GE, Elmore KL, Homeyer CR, 
Smith T. , Making the black box more transparent: Understanding the physical 
implications of machine learning. Bulletin of the American Meteorological 
Society. Aug 22, 2019.
https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-18-0195.1

Provides:
Overview of general ML interpretation/visualization methods.
Specifically for ANNs:
• Saliency maps (discussed below)
• Backwards Optimization (discussed below)
• Gradient-weighted Class-activation Maps
• Novelty Detection
Demonstration for applications:
• Storm-mode, precipitation type, tornado prediction, and hail prediction.

Some additional REFs
are in presentation.

https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-18-0195.1
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Description of LRP and its use for Application #2 of this presentation:

Ebert-Uphoff, I., & Hilburn, K. A. Evaluation, Tuning and Interpretation of 
Neural Networks for Meteorological Applications. Submitted to BAMS (in 
review), 2020. (arXiv preprint here).

Hilburn, K. A., Ebert-Uphoff, I., and Miller, S. D., Development and 
Interpretation of a Neural Network-Based Synthetic Radar Reflectivity 
Estimator Using GOES-R Satellite Observations.
Submitted to Journal of Applied Meteorology and Climatology (in review), 
2020. (arXiv preprint: here)

Application #1 of this presentation (with a bit of LRP):

Lee, Y., Kummerow, C.D, Ebert-Uphoff, I., Applying Machine Learning Methods 
to Detect Convection Using GOES-16 ABI Data (in preparation), 2020.

https://arxiv.org/abs/2005.03126
https://arxiv.org/abs/2004.07906
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Using visualization for Science Discovery in earth science (Application #3):
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Submitted to Journal of Advances in Modeling Earth Systems (JAMES) (in 
review). (arXiv preprint: here)
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https://arxiv.org/abs/2005.12322
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Recent tutorial on XAI - not specific to climate/weather:
Interpretable Machine Learning for Computer Vision
½ day tutorial at CVPR 2020,  June 15, 2020.
All four lectures available as videos: https://interpretablevision.github.io/

Recent book on Explainable AI (XAI) - not specific to climate/weather:

Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Muller, K.-R.,
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning.
Springer Nature, Aug 30, 2019.
https://www.springer.com/gp/book/9783030289539.

Provides:
• General overview of interpretation and visualization methods.
• Primarily for ANNs.
• 439 pages.

https://interpretablevision.github.io/
https://www.springer.com/gp/book/9783030289539.
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https://distill.pub/2018/building-blocks/.

Tutorial by C. Olah (video lecture): 
CVPR 2020 Tutorial on Interpretable Machine Learning for Computer Vision
June 15, 2020. See https://interpretablevision.github.io/
See Lecture #4: Christopher Olah, Introduction to Circuits in CNNs.

https://distill.pub/2017/feature-visualization/
https://distill.pub/2018/building-blocks/
https://interpretablevision.github.io/
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