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NN Interpretation — Initial Thoughts

Gaining insights into an NN is
* An iterative, scientist-driven discovery process,

* Driven by old fashioned methods of experimental design, and
hypothesis generation and testing,

* NN visualization tools simply provide additional tools to assist
this process (but they are not driving this process).

So far there is no such thing as an automated, one-size fits-all
visualization method. And there might never be.

- Earth scientist always remains crucial in the entire process.
- You will see that in the examples.



Acronyms

ANN = (Artificial) Neural Network = NN
Heat map = Heatmap = Attribution map (used interchangeably)

XAl = Explainable Al
= common term used by computer scientists to denote
interpretation/visualization methods for Al algorithms.



NN Interpretation Tools — Part 2
.

Two methods beyond what Amy McGovern just
covered in Part 1:
1) Layer-Wise Relevance Propagation (LRP):
A method for identifying strategies the NN uses by
looking into decision process for specific samples.
2) Receptive Field of CNNs:
A property of NN architecture — helpful for NN

architecture selection and interpretation.

Let’s get started with #1 ...



Motivation
I

ANNs

 Have emerged as promising tool in countless earth science related
applications.

* Perform amazingly well at many complex tasks.

* ANNs are generally treated as black box: it’s considered too difficult a
task to understand how they work.

 Whyis that a problem?
If ANNs work fine, why do we care how they work?



Example: Problematic strategies
.

Insights from a study of strategies utilized by a neural network.

Reference (also source of images on the following slides):

Lapuschkin et al. “Unmasking Clever Hans Predictors and Assessing What Machines Really
Learn.” Nature Communications, vol. 10, no. 1, Mar. 2019, p. 1096, doi:10.1038/s41467-019-

08987-4. \
Inventors of

Task: LRP method

* Given an ANN trained for object recognition in images.
* Decide whether there is a horse in a given image.

Methodology used in that paper:
e Step 1: Train neural network to decide whether there’s a horse.
» Step 2: Apply visualization technique (LRP) to analyze network’s strategies.

The following slides provide two things:
1. An example of problematic strategies an ANN might use.
2. A way to identify such strategies: visualization in action.



Detecting horses — Strategy 1 of algorithm

Input Images >

Attribution maps (from LRP):
In red is where the NN is

looking to decide whether ™——,
there is a horse.

Red areas: increase confidence
Blue areas: decrease confidence
Black areas: not useful

Attribution maps (aka heat maps)

Strategy 1: What does ANN detect in these images?



Detecting horses — Strategy 1 of algorithm

Input Images >

Attribution maps:
In red is where the NN is
looking to decide whether

8 ~—
there is a horse.

Red areas: increase confidence
Blue areas: decrease confidence
Black areas: not useful

Strategy 1: What does ANN detect? MAINLY PARTS OF HORSES. Great!



Detecting horses — Strategy 2 of algorithm

e ™

Input Images —

This is where the
NN is looking
to decide.

Strategy 2: What does ANN detect in these images?



Detecting horses — Strategy 2 of algorithm

Input Images —

MESA AN - aw
. .8

This is where the
NN is looking
to decide.

Strategy 2: What does ANN detect?
Poles = items correlated with horses.
Not a great strategy.
What happens for an image containing poles but no horse?
False positive!




Detecting horses — Strategy 3 of algorithm
I

Strategy 3: What does ANN detect in this image?



Detecting horses — Strategy 3 of algorithm
B

Look at attribution
map for a hint!

Strategy 3: What does ANN detect in this image?



Detecting horses — Strategy 3 of algorithm

Attribution maps
as hint.

Strategy 3: What does ANN detect in these images?
The html tags! Definitely do NOT want this strategy!
There are no html tags in the real world! Would result in false negatives.




What happened?
B

Don’t blame the algorithm - it did exactly what it was supposed to do:

* Algorithm correctly learned correlations present in the data to achieve its
objective.

* But some of the correlations were not representative of correlations in real
world (e.g., poles can occur without horse, no html tags in real world!).

e Can call this the “Inadvertent-correlation-present-only-in-data” problem.

—-> Algorithm seems to perform well, but its reasoning does not generalize to
the world.

e Conclusion: Using ANN as black box can be a problem.

But also learned:
e Visualization method proved useful to detect correct & incorrect strategies.

e Can we use such methods to find strategies learned by ANNs trained for
earth science applications?



How visualization methods can help

Using visualization tools can:

Provide information on ANN’s reasoning, e.g., in form of attribution
maps, as shown above.

In turn that provides:

1.

Increased trust in ANN — you’re more likely to use a method you
understand.

Important information for design of ANNs, enables physics-guided
machine learning.

Provides new role for ML: visualization output can even be used to
discover new science! (See REFs at end of this presentation).



Visualization — Type A: Feature Visualization
.

Philosophy: Seek to understand all internal components of ANN.

Input layer
(yellow)

Hidden layers Output layer
(blue) (red)

] fo

el &

.

Seek to understand the meaning of all intermediate (blue)
nodes.




Visualization — Type A

Visualizing individual neurons — two sample methods:

Method 1: Identify training samples that yield
high activation of that neuron.

* But what in the image triggered activation -
the building or the sky?

» Strategies might still not be obvious.

* Nevertheless very useful method.

* Excellent application paper:
Xie, M., Jean, N., Burke, M., Lobell, D., & Ermon, S. (2016,
March). “Transfer learning from deep features for remote
sensing and poverty mapping”. In Thirtieth AAAI conference
on artificial intelligence. LINK TO PAPER .

Method 2: Generate synthetic image that

maximizes activation of considered neuron.

e Uses built-in derivatives + gradient descent
tools of ANN framework. Easy to do.

e Start with random image or input sample.

e Gradient descent to max. neuron activation.

Step 0 Step 4

Recommended reading/video:

* Olah, C.,, Mordvintsey, A., & Schubert, L. (2017). Feature
visualization. Distill, 2(11), e7. LINK TO PAPER

*  CVPR 2020 Tutorial on Interpretable Machine Learning for
Computer Vision, June 15, 2020. LINK TO VIDEO
See Lecture #4: Christopher Olah, Introduction to Circuits in
CNNs.

Related topic - backward optimization by Amy:

* McGovern, Amy, et al. "Making the black box more
transparent: Understanding the physical implications of
machine learning." Bulletin of the American Meteorological
Society 100.11 (2019): 2175-2199.



https://distill.pub/2017/feature-visualization/
https://interpretablevision.github.io/
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12196/12181

Visualization — Type A

We know that layers in a CNN represent
increasingly complex spatial patterns,
in increasing size.

object models

But — those types of patterns tend to be

more pronounced for cats and dogs than SR LB B object parts
for atmospheric rivers and cold fronts, ‘. - =f" ‘JZ:‘S (combination

because we deal with =Y & of edges)
* Fuzzy boundaries,
* Few distinct parts, such as eyes, ears

and noses.
edges
That’s why we often prefer Type B for
earth science applications.
So what’s Type B?
pixels

Image source: Garg, D., & Kotecha, K. (2018). Object Detection from
Video Sequences Using Deep Learning: An Overview. In Advanced
Computing and Communication Technologies (pp. 137-148).



Type B: Attribution / Explaining Decisions

Philosophy: Understand the ANN’s overall decision making for specific input.

I"ﬁ'ﬁi’;er Hidden layers Output layer

(blue) (red)

* Seek to understand the reasoning of entire NN algorithm - for a specific input.
* Study overall input-output function of ANN, y = f(x), where x = input, y = output.
 HERE: Do NOT worry about meaning of intermediate (blue) nodes.




Type B: Common Means of explanation = Heat maps

(aka Attribution maps)
I

Example: Visualization to explain classification of a specific image

Question answered in this example:

Which pixels of the input image are most important for NN to decide
that this is a shark?

data

ML blaekbox
decision

F

shark

explanation

Heatmaps indicate:

* Regions in an input sample that are
“heat map” key for decision/estimate made by NN
for this input.

Source: www.heatmapping.org.



http://www.heatmapping.org/

Heat maps / attribution maps

B
* Heat maps can be calculated with many different algorithms.

 Examples (see also Amy’s talk this morning):
— Saliency maps
— GradCAM
— Occlusion Sensitivity

Visualization
toolboxes

, _ available!
— Layer-Wise Relevance Propagation (LRP)

— many others.
* New methods are being developed as we speak.
* Each type of heatmap has different interpretation.
 Each method has its pros and cons.
* Not every method works for every architecture.
* Choice depends on application and question you’re trying to answer.
 The purpose of this presentation
— Is not to promote LRP as “the best method”.

— Is to show what visualization methods in general can do for the community
— using LRP as an example.

 We use images as input here for illustration, but input can be anything.
 Heatmap = overlay for all input elements — regardless of input format.



Visualization toolboxes
e

Package 1: iNNvestigate (NN + investigate = iNNvestigate)

* Available at www.heatmapping.org
* Implementations: pytorch & TF/Keras (TF2.0 version coming soon)
* Includes LRP methods.

e
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These are “attribution” methods for image classification:
identify what the network finds important in input image for certain task


http://www.heatmapping.org/

Visualization toolboxes
N

Package 2: tf-explain

Available at https://tf-explain.readthedocs.io/en/latest/.
Implementation: Tensorflow (Compatible with TF2.0!)

Sample result for network VGG16:

. _ (v Sl % >
Input Activation Occlusion Grad CAM SmoothGrad

visualizations sensitivity

More toolboxes exist.


https://tf-explain.readthedocs.io/en/latest/

Relevance propagation for LRP
I

1. forward computation

LRP = Layer-wise Relevance
Propagation

How it works:
1. Feedininput sample.
Regular forward pass of

ANN - calculates output 2. relevance propagation
mput Rg<—k:
2. New backward pass to ‘ ......... Q _________ ‘ ‘ Q
___> output
calculate relevance from ~_

layer to layer. Q """"" Q """"" Q Q Q = i :

Image Source:

Backward pass: Montavon et al. (2018)

Need a new type of rule to distribute relevance.
This does not use the usual back propagation.
Rule: next slide — details in Montavon et al. (2018).




2. relevance propagation

\\:: ,,,,, Q jj:z' E @) \output<_ Th e aﬁ —ru Ie fo r LR P
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Simplest formula for LRP backward relevance propagation (“alpha-beta

rule”):
Z+ 7= Zi,j = Wi,j * aCtin
(Li+1) __ p(+1) ij ] Z; i*= positive part
Ri<—j _R] . OC—+—|—ﬁ—_ l,]_ .
Zj Zj Zj ;= negative part
Zj+ — zl Zi,j+
and f=1-«

a and [ are tuning parameters:
a = how much positive attribution allowed

f = how much negative attribution allowed

a allows manual control of positive vs. negative attribution.
Common choice: a« = 1, = 0 --> only positive attribution.

For details see Montavon et al. (2018).



Some comments on LRP

 We have found LRP to be extremely useful for many of our applications.
* How-to tips on LRP use: See Montavon et al. (2018)
* Biggest limitation:

LRP implementation only available for simple NN architectures so far, but
extensions being developed as we speak.



Application 1

Yoonjin Lee (ATS), Chris Kummerow (ATS) at CSU.
Task: Detect convection from satellite images.

Why is it important to detect convection?

Convection releases heat.

Determine locations of convection in satellite images = feed that info into
numerical weather prediction (NWP) model in real time to improve forecast.

This is a Data Assimilation task:
Use current observations to adjust weather model in real time.

Potentially high impact area for ML.

Yoonjin Lee

Lee et al., 2020. Ph.D. student
(Kummerow group)



GOES-16 band 2 imagery (30-Second, 0.5 km)
West Texas — 28 Mar. 2017

Connecting Models and Observations

Video — Courtesy
of CIRA

Look for
convection:
Wherever clouds
have high
brightness and are
“bubbling”.

Easy to see with
our eyes from
animation!

Best way to detect
with ML?

&)

» &
10001 G-16 IMG. 28 MAR 17087

(Animation)



Detecting convection
I
Q1: How do humans detect convection?

Look for clouds with combination of
1. High brightness;
2. Texture: “bubbling”. Especially apparent in videos.

/

Next: Trained an ANN to detect convection.
Q2: How does the ANN detect convection?

First, discuss set-up for ANN:
* Input: Sequence of five image patches, 2 minutes apart

o 0 0 o 0

3 3 3 L3 3

10 10 10 10 10

15 15 15 15 15

20 20 20 20 20

25 25 25 25 25

] 10 20 0 10 20 ] 10 20 ] 10 20

* Architecture: CNN - Typical image classification network

* Output: Two output neurons representing two classes:
i) There is convection in image sequence
ii) There is no convection in image sequence.



Q: How is ANN detecting convection?
B

We hope to answer the following questions:

1. Is our ANN paying attention to all the clues we know are important? If not,
there’s probably room for improvement.

2. s our ANN using faulty reasoning? Example: using correlation present in
data, but not representative of real world.

3. Inshort, do we agree with the strategies used by the ANN?

Method used: Layer-wise relevance propagation (LRP)
Step 1: Train the ANN.
Step 2: Freeze the ANN - Weights and biases are now fixed.
Step 3: Feed specific input sample into ANN to get ANN output.
Step 4: Apply LRP analysis for this specific sample.

—> tells us which part/area of input sample is important for this ANN
output.



LRP result for our “convection ANN”
.

0

Input: .

10

Sequence of |
five images =«

25

10 4

15 4

20 +

25 4

10

20

o 0 o

0

3 3 3 3

10 10 10 10

15 15 15 15

20 20 20 20

25 25 25 25

Apply LRP —> Where is ANN looking?

U

10 A 10 A 10 A 104

15 4 15 4 15 4 15 1

20 4 20 4 20 4 20

1—1 71

25 1 [ | 5 - zs-i

0

T
10

T
20

0 10 i 0 10 o 0 10 0

Visual analysis of heatmaps by domain expert tells us:
This ANN looks primarily for high brightness, does not focus on texture!

- Lesson: ANN not using all information, missing texture signal. Sub-optimal.

- Explore methods that force ANN to focus on texture, too.
- Ex.: Pre-train on samples that mainly have texture signal;

reformulate as segmentation task - to give ANN feedback on where to look.

%

10 20

Key point: Visualization tools - We can “see” better what’s working well / badly.

-> Brings ANN reasoning back to space of physics and expert knowledge!



Application 2:

Generating synthetic radar images from GOES imagery
B

Input: GOES Channels C07, C09, C13, GLM. Output: MRMS (radar).

Input:

Input

Image

4 channels

HNN
Output:

Output
image

Motivation:

GLM
(lightning)

250
200
150

100

i -
200
150

100

50 -SRI

Kyle Hilburn

0 0 100 200

GOES imagery is available in all of CONUS, but MRMS is not.



Application 2 — NN architecture

Input: GOES channels Output: MRMS estimate

0.5] GOES ABI #2 [0.4,1.0) GOES ABI #3 (0.0, 1.0) GOES GLM [0.0, 0.3]
250 - 30 250
’ p A
v ‘ 20 o
‘¢ o

B ‘ 150

1004 100
- .

50 1 50

° 13

00 200 13 0o 200 3 100 200

Input C R P C P C P C U C U C U C C

> > > —> H— > > >

Image 3x3 | 12x2 | |3x3 | | 2x2 | | 3x3 | | 2x2 3x3 | |2x2 | 13x3 | 2x2| 3x3|  2x2| | 3x3 1x1

Decoder layers

P channels

C = convolution layer
P = pooling layer (downsampling)
U = upsampling

Numbers: size of filters/masks



Question: How does NN know when to create large MRMS estimates?

Method:

Select examples where MRMS estimate is high. Where is NN looking (LRP)?

Inputs:

Input Ch#0 [0.000,0.720] p=0.642

Input Ch#1 [0.000,0.887] p=0.558
1 =

Input Ch#2 [0.023,0.929] p=0.748

Input Ch#3 [0.000,1.000] p=1.000

MRMS true [0.0,1.0] p=0.515

MRMS truth

Gradient

of inputs:

Gradient for Ch #0 (using Sobel)

Gradient for Ch #1 (using Sobel)

Gradient for Ch #2 (using Sobel)

Gradient for Ch #3 (using Sobel)

wr‘ "' I

o

4

LRP for one
output
pixel

Heatmap #0 SUM=0.1501 (18.8%)
0

Heatmap #1 SUM=0.1451 (18.1%)

Heatmap #2 SUM=0.2584 (32.3%)
0

Heatmap #3 SUM=0.1260 (15.7%)
0

Py
230 %240 250

MRMS estimate [-0.1,0.9] p=0.800

MRMS est.

LRP if
GLM signal
erased

Heatmap #0 SUM=0.0962 (19.4%)

Heatmap #1 SUM=0.0837 (16.9%)

Heatmap #2 SUM=0.1397 (28.1%)

.
Heatmap #3 SUM=0.0000 (0.0%)
>

V.,

40 250

MRMS estimate [-0.0,0.9) p=0.497

MRMS est.

LRP yields 2 strategies for creating large MRMS estlmateS'
Strategy 1: Presence of lightning triggers high MRMS values Ll.ghtnlng = strongest trigger.
Strategy 2: In no lightning NN focuses on locations with strong gradients: cloud boundaries.



LRP vs. Saliency heatmaps

‘ Input & Output - Original size
(c) GOES—-CH 13 (d) GOES — GLM (e) MRMS true (f) MRMS estimate
o gy - o

(a) GOES—-CH 7
59

(b) GOES—CH 9

REFs:
‘ Input & Output - Zoomed into neighborhood of pixel of interest: (40,125) ‘ * Hllbu rn et al- (2020)
(g) GOES—CH 7 (h) GOES - CH 9 (i) GOES - CH 13 (j) GOES — GLM (k) MRMS true (I) MRMS estimate Ebert-U phoff and

* Hilburn (2020)

130 130 L) 130
F

(m) Gradient—CH 7 (n) Gradient—CH 9 o) Gradient — CH 13 (p) Gradient — GLM
|

= r
E 110 0

M~ * Simple gradient
] ‘ = e e approximation
f 120 / 1 . <— ofinput channels
il i (using Sobel

‘f f operator)

‘NeuralNetworkheatmaps LRP fou nd 3rd strategy:
(q) LRP—CH7 (r)LRP—CH 9 (s) LRP—CH 13 (t) LRP = GLM
Strategy #3: Extremely dense
ip . fg — " — areas of clouds trigger high

=0 £ 8

A MRMS values.

Area of large gradient  Area of high brightness
(cloud boundary) (dense area of cloud)

(u) Saliency = CH 7 (v) Saliency —CH 9 (w) Saliency—CH 13 (x) Saliency — GLM

= Saliency method:
» # - NN Heatmap:

saliency . Only identified one strategy
(lightning) — and not even concisely.




Application 3: XAl for Science Discovery
L.

Use LRP and other tools to discover new science.

Example: :
Find indicator patterns of climate change: Ben Toms  Elizabeth Barnes
What are the spatial patterns (in temp or precip)
most indicative of climate change?

Why use Al for this purpose?
1) Great at picking up and utilizing spatial patterns.
2) Can use visualization tools to look at those patterns.

References (XAl for science discovery):

Toms, B. A,, Barnes, E. A., & Ebert-Uphoff, I. Physically Interpretable Neural Networks for the Geosciences:
Applications to Earth System Variability, 2020 (preprint).

Barnes, E. A., Hurrell, J. W., Ebert-Uphoff, |., Anderson, C., & Anderson, D., Viewing forced climate patterns
through an Al Lens. Geophysical Research Letters, 2019.

Barnes, E. A., Toms, B., Hurrell, J. W., Ebert-Uphoff, ., Anderson, C., & Anderson, D. Indicator patterns of
forced change learned by an artificial neural network, 2020 (preprint).


https://arxiv.org/abs/1912.01752
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL084944
https://arxiv.org/abs/2005.12322

Last topic: Receptive
.

We know that layers in a CNN represent
increasingly complex spatial patterns,
in increasing size.

For many earth science applications

it’s hard to identify such specific patterns
(b/c of fuzzy boundaries, no
ears/eyes/etc.).

* But what about size of features?

e Can we say something about the size
of meteorological features that each
layer can recognize?

* Yes!

e That’s called the receptive field!

Fields in CNNs

object models
U u!TJ !» : -?v )
’ .!T, .

BERAS ok | | :
‘ L. ;1-"‘:?! object parts
D | 5 e (combination
ISPTNS A of edges)

edges

pixels

Image source: Garg, D., & Kotecha, K. (2018). Object Detection from
Video Sequences Using Deep Learning: An Overview. In Advanced
Computing and Communication Technologies (pp. 137-148).



Last topic: Receptive Fields in CNNs
.

Consider a “purely convolutional” NN:
e Layer types: convolution, pooling, upsampling
* No fully-connected (dense) layers allowed.

C Output
1x1 Image

Input C*P»C_’P»C_’P_’C_’U_’C U C U C
Image 3x3| 1 2x2 | |3x3 | | 2x2 | | 3x3 | | 2x2 3x3 | |2x2 | [3x3 | |2x2| |3x3 | | 2x2 | | 3x3

Decoder layers

P channels

object models

Question: How big exactly is spatial context at each layer of this NN?
Answer: Determine “receptive field (RF)” of each layer.

i object parts
¥  (combination
] of edges)

Then: Can roughly match those RF sizes to size of meteorological
phenomena we want to detect - architecture starting point. m edges



Receptive Field (RF)

.
Receptive field /
(Layer0) | ¥ ﬁ“ * deeper layer
------- (Layer k)

Receptive field of Layer k:

1. Consider a single pixel in Layer k (red cross).

2. Determine the smallest box size in input layer (red box) that contains all pixels
connected in the NN to that pixel in Layer k.

- RF = Which pixels in input image can affect the pixel (red cross) in Layer k?
- RF = Max size of any spatial pattern in original input that Layer k can recognize.



RF for Application 2

Input: GOES channels Output: MRMS estimate

Input C R P C P C P C U C U C U C C
Image 3x3 | 12x2 | |3x3 | | 2x2 | | 3x3 | | 2x2 3x3 | |2x2 | 13x3 | 2x2| 3x3|  2x2| | 3x3 1x1

Decoder layers

P channels

C = convolution layer
P = pooling layer (downsampling)
U = upsampling

Numbers = size of filters/masks



Input

Image

4 channels

Visualization of Theoretical Receptive Field (TRF)

10x10

18x18

22x22

Decoder layers

3x3 | |2x2| |3x3 | | 2x2 | | 3x3 | | 2x2 3x3

2Xx2

C
3x3

-

U
2Xx2

3x3

2x2

1x1

Input image: 256x256 pixels

Red box = size of spatial context at each layer
TRF grows to 48x48 pixels.

TRF = max spatial context of layer.

.

38x38

46x46

48x48




Effective Receptive Field (ERF)
I

Theoretical receptive field (TRF):

Provides max bounding box
But impact is not uniform within
box.

3)(3 - :

w2133

10x10

18x18 22

x22

Decoder layers

3x3

2x2

333/ |

2x2

3x3

22|33 ]

w2 [

3x3

M2 [T

1x1

.

38x38

46x46

48x48

Effective receptive field (ERF)

Roughly Gaussian distribution
Changes during training (see
image on right).

Here: getting more focused.

ERF

(a) Untrained

b) Trained




Effective Receptive Field (ERF)
I

Theoretical receptive field (TRF):
* Provides max bounding box
* Impactis not uniform within box.
10x10 18x18 22x22

3x3 4x4 8x8
Decoder layers
e Cc P C_ P C_ P | C U JC U C_U]°cC
Image 3x3 | | 2x2 | [ 3x3| | 2x2| | 3x3 | | 2x2 3x3 | |2x2| | 3x3| | 2x2 | | 3x3 | | 2x2 1x1

4 channels
.

38x38 46x46 A8x48

Key lesson: Always makes sure your theoretical receptive field (TRF)
is big enough to capture meteorological features.




Receptive field when there are dense layers

Architecture we just looked at (no dense layer):

Input C
Image 3x3

P channels

Typical architecture for image classification (dense layers at end):

Input

Image

P channels

C Output
1x1 Image

*P*C*P*C Pl C U C»U_’C*U_'C
2x2 | |3x3| | 2x2 | | 3x3 | | 2x2 3x3| |2x2 | |3x3 | |2x2 | | 3x3|  2x2|  3x3
Decoder layers
Encoder Decoder

3x3

3x3

P
2x2

C
3x3

C
3x3

P
2x2

3x3

3x3

2x2

—

—>

Feature extraction

Feature Interpretation layers

(0]0]40]0]
label

Feature interpretation



Architecture for classification

—>

P channels

Input C RN C R P R C L C RN P L C R C L P | D L
Image 3x3 | |3x3| 2x2 | |3x3 | |3x3| 2x2| |3x3 | 3x3
Feature Interpretation layers

Function:

e This block has same function as
encoder layer in image translation!

e Extract features from image.

What about receptive field?
* Apply at output layer of blue block:

Function:

* Interpret presence of detected
features.

e Assign corresponding output label.

Provides size of features that can be detected in input space.

Rest of the network just interprets those features.

Once you reach a dense layer:
* Receptive field = entire input space.

Output
label

* So analyze feature size before first dense layer instead (as indicated above).



NN Interpretation — Final Thoughts

Gaining insights into an NN is
* An iterative, scientist-driven discovery process,

* Driven by old fashioned methods of experimental design, and
hypothesis generation and testing,

* NN visualization tools simply provide additional tools to assist
this process (but they are not driving this process).

So far there is no such thing as an automated, one-size fits-all
visualization method. And there might never be.

- Earth scientist always remains crucial in the entire process.



ANNSs are not a black box anymore
How much can visualization help?

Put backpack into In§|de
X ray scanner x view

- Put box Inside
into tool view

Tools for visualization + N Box getting
— | interpretation of ML methods more
transparent

Not perfect, but better
than a black box.



Thank you!

Remaining slides contain links to toolboxes and lots of REFs sorted by topic.

Questions?

Connecting Models and Observations



Some Available software

 “Keras explanation toolbox” - aka “iNNvestigate neural networks”
 What: LRP and other methods

* For: Keras with Tensorflow backend
* Level of development support: high
e Where: www.Heatmapping.org

e “LRP toolbox”
* What: LRP only
e For: Tensorflow

* Level of development support: decreasing
 Where: www.Heatmapping.org

* “LUCID”

* What: Lots of feature visualization methods. Implements method
discussed by Olah et al. (2017)
* For: Tensorflow

*  Where: https://github.com/tensorflow/lucid



http://www.heatmapping.org/
http://www.heatmaping.org/
https://github.com/tensorflow/lucid

Some additional REFs

are in presentation.
.

References

Seminal article - written for climate/weather community:
McGovern A, Lagerquist R, Gagne DJ, Jergensen GE, Elmore KL, Homeyer CR,
Smith T., Making the black box more transparent: Understanding the physical
implications of machine learning. Bulletin of the American Meteorological
Society. Aug 22, 2019.
https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-18-0195.1

Provides:
Overview of general ML interpretation/visualization methods.
Specifically for ANNs:
» Saliency maps (discussed below)
* Backwards Optimization (discussed below)
e Gradient-weighted Class-activation Maps
* Novelty Detection
Demonstration for applications:
e Storm-mode, precipitation type, tornado prediction, and hail prediction.


https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-18-0195.1
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Description of LRP and its use for Application #2 of this presentation:

Ebert-Uphoff, I., & Hilburn, K. A. Evaluation, Tuning and Interpretation of
Neural Networks for Meteorological Applications. Submitted to BAMS (in
review), 2020. (arXiv preprint here).

Hilburn, K. A., Ebert-Uphoff, I., and Miller, S. D., Development and
Interpretation of a Neural Network-Based Synthetic Radar Reflectivity
Estimator Using GOES-R Satellite Observations.

Submitted to Journal of Applied Meteorology and Climatology (in review),
2020. (arXiv preprint: here)

Application #1 of this presentation (with a bit of LRP):

Lee, Y., Kummerow, C.D, Ebert-Uphoff, I., Applying Machine Learning Methods
to Detect Convection Using GOES-16 ABI Data (in preparation), 2020.


https://arxiv.org/abs/2005.03126
https://arxiv.org/abs/2004.07906
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Using visualization for Science Discovery in earth science (Application #3):

Toms, B. A., Barnes, E. A., & Ebert-Uphoff, |. Physically Interpretable Neural
Networks for the Geosciences: Applications to Earth System Variability.
Submitted to Journal of Advances in Modeling Earth Systems (JAMES) (in
review). (arXiv preprint: here)

Barnes, E. A., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C., & Anderson,

D., Viewing forced climate patterns through an Al Lens. Geophysical Research
Letters, 46(22), 13389-13398, https://doi.org/10.1029/2019GL084944, Nov
20109.

Barnes, E. A., Toms, B., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C., &
Anderson, D. Indicator patterns of forced change learned by an artificial neural
network. Submitted to Journal of Advances in Modeling Earth Systems (JAMES),
in review. (arXiv preprint here).


https://arxiv.org/abs/1912.01752
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL084944
https://arxiv.org/abs/2005.12322
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Recent tutorial on XAl - not specific to climate/weather:
Interpretable Machine Learning for Computer Vision
% day tutorial at CVPR 2020, June 15, 2020.
All four lectures available as videos: https://interpretablevision.github.io/

Recent book on Explainable Al (XAl) - not specific to climate/weather:

Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Muller, K.-R.,
Explainable Al: Interpreting, Explaining and Visualizing Deep Learning.
Springer Nature, Aug 30, 2019.
https://www.springer.com/gp/book/9783030289539.

Provides:

* General overview of interpretation and visualization methods.
* Primarily for ANNs.

* 439 pages.


https://interpretablevision.github.io/
https://www.springer.com/gp/book/9783030289539.

References

Feature visualization (Type A):

Olah et al. (2017)
Olah, C,, et al. “Feature Visualization.” Distill, distill.pub, 2017,
https://distill.pub/2017/feature-visualization/.

Olah et al. (2018)
Olah, C,, et al. “The Building Blocks of Interpretability.” Distill, distill.pub, 2018,
https://distill.pub/2018/building-blocks/.

Tutorial by C. Olah (video lecture):

CVPR 2020 Tutorial on Interpretable Machine Learning for Computer Vision
June 15, 2020. See https://interpretablevision.github.io/

See Lecture #4: Christopher Olah, Introduction to Circuits in CNNs.



https://distill.pub/2017/feature-visualization/
https://distill.pub/2018/building-blocks/
https://interpretablevision.github.io/
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Deep Taylor / LRP:
Montavon et al. (2015)
Montavon, Grégoire, et al. “Explaining NonLinear Classification Decisions with
Deep Taylor Decomposition.” arXiv [cs.LG], 8 Dec. 2015,
http://arxiv.org/abs/1512.02479. arXiv. (Earlier version of 2017 paper.
Supplement has proves of Deep Taylor statements.)

Montavon et al. (2017)

Montavon, Grégoire, et al. “Explaining Nonlinear Classification Decisions with
Deep Taylor Decomposition.” Pattern Recognition, vol. 65, May 2017, pp. 211-
22, d0i:10.1016/j.patcog.2016.11.008.

(Emphasis on Deep Taylor)

Montavon et al. (2018)

Montavon, Grégoire, et al. “Methods for Interpreting and Understanding Deep
Neural Networks.” Digital Signal Processing, vol. 73, Feb. 2018, pp. 1-15,
doi:10.1016/j.dsp.2017.10.011.

(Deep Taylor + LRP)
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LRP original:
Bach et al. (2015)
Bach, Sebastian, et al. “On Pixel-Wise Explanations for Non-Linear Classifier
Decisions by Layer-Wise Relevance Propagation.” PIOS One, vol. 10, no. 7, July
2015, p. e0130140, doi:10.1371/journal.pone.0130140.
(LRP original paper. Main LRP formula is Eq. (60).)

LRP + t-SNE:
Lapuschkin et al. (2019)
Lapuschkin, S., Waldchen, S., Binder, A., Montavon, G., Samek, W., & Miller, K.
R. (2019). Unmasking Clever Hans predictors and assessing what machines
really learn. Nature communications, 10(1), 1096.



