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What is Segmentation?

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

- = s
GRASS, CAT, DOG, DOG, CAT  DOG, DOG, CAT
No objects, just pixels Single Object Multiple Object
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Segmentation of Atmospheric Phenomenon

radarsite near
Blue Hill, NE

Nuckolls County



|dentification, Classification, and Tracking

e Early warning
e Verification for specific atmospheric schemes

Automation of processes

Analytics
e Counting and comparing numbers or size of features

Targeted Data Extraction
e Identify features for further analysis
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Creation of Labels

Hand Drawn
e Expert derived - Subjective
e Manually Intensive

Heuristics
e Rule based - Objective
e Can be fast
e May miss some features
e May include erroneous features

Crowdsourcing
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Discussion on Labeling

How precise do you need to be?
e Exact - pixel for pixel for feature
e Bounding box - general area of feature
e Disagreements between experts

If | have heuristics, why do | need Machine Learning?
e Heuristics often derived from other data sources not from target
dataset
e Inference is fast, depending on algorithm, can be significantly faster
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Integer Encoding Method:

0 = background
1 = Tropical Cyclone
2 = Cloud

N = Number of Classes
LABELS = (X, Y, 1)
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Integer Encoding Method:

0 = background
1 = Tropical Cyclone
2 = Cloud

N = Number of Classes
LABELS = (X, Y, 1)

Problem: Model can interpret values order is meaningful and higher values could be interpreted
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One Hot Encoding

0 = background
1 = Tropical Cyclone
2 = Cloud

Splits integer array into an array for each class.
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00000000000000000000000000

Many tools exists to perform this conversion.

N = Number of Classes
Label = (X, Y, N)
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Water Vapor Image with

Water Vapor Image Tropical Cyclone Labels
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Dataset Imbalance

Truth (White are Labeled Cyclones) Prediction from Model

= 95% Accuracy
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Working with Dataset Imbalances

Image Processing Different Loss Functions
Sampling Techniques ToU/
e Undersample majority class B gg Jaccard oot
e Oversample minority class WCE DPCE g Exp Harmonic Dice Lovasz
2 — Di
. Weight chass Distatice map Lilg L%g o . Distance map Boundary Loss
Modify Labels penafized Dice  weighted
Cross Entropy (CE) - ik ' Two side One side
. cight — Multi- distance map
Hard Down-weight FP & FN class weighted
mining”  €asy examples - Tversky GD HD Loss
TopK loss  Focal loss a+p=1 Weight

FP & FN

DiceTopK. A pGD
FocalTversky
Distribution-based Loss _ Region-based Loss Boundary-based Loss

Source: https://github.com/JunMal1/Segloss
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https://github.com/JunMa11/SegLoss

Image Processing

Sliding Window Technique

Training dataset can now contain more
equitable distribution of both positive and
negative segmentation

Potential Downsides:
e More processing
e Not efficient
e Convolutional Layers are doing this

internally
uuq
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Loss Function - Dice Coefficient

DC = 1.0 Identical Image

2% XNY _
Dice Coefficient = |X||+|Y| | DC = 0.0 No overlap

False Negative

True Positive

Prediction (Y)

False Positive
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Dice Coefficient in Code

# using keras

def dice coeff(y_true, y pred):
smooth = 1.
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y pred_f)
score = (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
return score

def dice loss(y_true, y pred):
return (1 - dice_coeff(y_true, y pred))

# smooth variable helps optimizer and avoids division by zero
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Loss Function - Tversky Coefficient

2% XNY]|

Tversky Coefficient = (XNY[+ ajX-Y[+B|Y-X|)

o < B penalizes false negatives more

def tversky_ coeff(alpha=0.3, beta=0.7, smooth=1e-10):

def tversky(y_true, y_pred):
y_true = K.flatten(y_true)
y_pred = K.flatten(y_pred)
truepos = K.sum(y_true * y pred)
fp_and_fn = alpha * K.sum(y_pred * (1 - y_true))
+ beta * K.sum((1 - y_pred) * y_true)
return (truepos + smooth) / ((truepos + smooth)
+ fp_and_fn)
return tversky
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Neural Network Structures - U-Net

input :
image |w{w
tile ;

e Links small features before compression .
with larger features after compression V.

e Commonly seen in image segmentation
challenges on Kaggle.com
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output
segmentation
map

= conv 3x3, ReLU
copy and crop

¥ max pool 2x2
# up-conv 2x2

= conv 1x1
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U-Net in Code

def conv2d_block(input_tensor, n_filters=64, kernel_size=3, layers=2, batchnorm=True):
X = input_tensor

for 1 in range(@,layers):
X = Conv2D(filters=n_filters, kernel_size=(kernel size, kernel_size), kernel_initializer="he_normal",
padding="same" ) (x)
if batchnorm:
x = BatchNormalization()(x)
X = Activation("relu")(x)

| Single Channel Input
i INPUT = (BATCH_SIZE, 572, 572, 1)
_inpm i outp H
image o{e [+ Seamentation input e had REG (ie 3 Ch 1)
H mep . you ha ie annels
i Image > INPUT = (BATCH_SIZE, 572, 572, 3)
' | tile
Ve t
- -: >l > = conv 3x3, ReLU | il v
" 1 copy and crop
N ] ~ § max pool 2x2 ~
i r) § ooy 202 \ ST
. o = conv 1x1 I B W




U-Net in Code

# contracting path

# Block 1

cl = conv2d_block(input_img, n_filters=n_filters*1, kernel_size=3, layers=2,
batchnorm=batchnorm)

pl = MaxPooling2D((2, 2)) (c1)
pl = Dropout(dropout*0.5)(pl)
# Block 2

c2 = conv2d_block(pl, n_filters=n_filters*2, kernel_size=3, batchnorm=batchnorm)
p2 = MaxPooling2D((2, 2)) (c2)
p2 = Dropout(dropout)(p2)

# For the depth of U-Net, repeat for each block c3, c4
# increasing multiplier on n_filters by factor of 2 each block

c5 = conv2d_block(p4, n_filters=n_filters*16, kernel_size=3, batchnorm=batchnorm)

Laboratories
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U-Net in Code

# expansive path

ué = Conv2DTranspose(n_filters*8, (3, 3), strides=(2, 2), padding="same') (c5)

u6 = concatenate([u6, c4])

u6 = Dropout(dropout) (u6)

c6 = conv2d_block(u6, n_filters=n_filters*8, kernel_size=3, layers=2, batchnorm=batchnorm)

u7 = Conv2DTranspose(n_filters*4, (3, 3), strides=(2, 2), padding="same') (c6)
u7 = concatenate([u7, c3])

u7 = Dropout(dropout) (u7)

c7 = conv2d_block(u7, n_filters=n_filters*4, kernel_size=3, batchnorm=batchnorm)

# For the depth of U-Net, repeat for each block c8, c9
# decreasing multiplier on n_filters by factor of 2 each block

##
outputs = Conv2D(output_channels, (1, 1), activation='sigmoid') (c9)
model = Model(inputs=inputs, outputs=outputs)
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Discussion on Neural Nets for Segmentation

Things to try:
e Use Gaussian Noise versus Dropout
Vary Number of Filters (n_filters) value
Keep consistent Number of Filters (n_filters) between blocks
Vary Depth of U-Net
Vary final Activation

Things to consider:
e Depth and Number of Filters impact memory usage
e U-Net one of many deep neural networks for image segmentation
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U-Net in Action - Tropical Cyclones

e Water Vapor Channel from GOES Imager (Previous
Generation)

e Storm centers from IBTracks Dataset

e Data for 2008 through 2016

® Image segmentation 25x25 pixel box
segmentation centered on storm

® Only used storms classified as Tropical Storm or
greater on Saffir Simpson Scale Labeled Data

o 34 knots and above
~ 10,000 Labeled Data
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Manual Labels

Automatic Labels from
Trained Neural Network


http://drive.google.com/file/d/1SC-hDRKC1hxpbuusbrIhTTWc2c4Ma05D/view

GOES-16 0.64 umn V'S 20170703 20:03272

GOES-16 0.64Um VIS 20170703 20:28:272
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GOES-16 0.64 ymr V'S 20170703 20:10:272

GOES 16 0.64 um VIS 2017-07-03 20:35272

Goal - Neural Network for
Automatic Detection and

Labeling of Convection
Initiation Areas

24



Used - 90 Minute Lead Time

T =Time for Prediction

—

g

T
Binary (yes/no)
Composite Reflectivity > 35 DBz

Neural Network:

T-110, T - 100, T - 90 (minutes) 6 Inputs (Satellite Only)
Band 9, Band 15 1 output (Binary Mask where DBz > 35)

Composite Reflectivity
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RIASY | Prediction from T-30

Truth 2018-05-20T00:00:00 Prediction from T-30

e
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T 1 _‘\/‘_,

k o ( Prediction from T-90

Truth 2018-05-20T00:00:00 Prediction from T-90

-
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Summary

Understand the problem you are trying to solve first
e The tools you need vary on the solution you are looking for
e Many different tools in the toolbox

Labeled data can be challenging
e Not always an agreement - our objects can have fuzzy

Dataset Imbalance can skew results
e Be aware and evaluate random samples

Field is still rapidly evolving
e Exciting and it can be difficult to keep up
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Thanks!

Questions?

Jebb.Q.Stewart@noaa.gov
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Resources and References

Learning:

https://www.tensorflow.org/tutorials/images/segmentation

https://towardsdatascience.com/fastai-image-segmentation-eacad8543f6f
https://medium.com/analytics-vidhya/pytorch-implementation-of-semantic-segmentation-for-single-class-from-scratch-81f96643c98c
https://www.jeremyjordan.me/semantic-segmentation/

Data:
https://www.ncdc.noaa.gov/ibtracs/
https://www.bou.class.noaa.gov/saa/products/search?datatype family=GVAR_IMG

Papers:

U-Net: Convolutional Networks for Biomedical Image Segmentation, Ronneberger, O. (2015)
https://arxiv.org/pdf/1505.04597.pdf

Evolution of Image Segmentation using Deep Convolutional Neural Network: A Survey,Sultana et al (2020),
https://arxiv.org/abs/2001.04074
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