

Ju<mark>ne 23,</mark> 2020 Al4<mark>ESS</mark>

Recurrent networks in geosciences

CHAOPENG SHEN, DAPENG FENG, WEN-PING TSAI AND KUAI FANG

¹CIVIL AND ENVIRONMENTAL ENGINEERING, PENN STATE UNIVERSITY

CSHEN@ENGR.PSU.EDU

https://github.com/mhpi

Kuai

Overview

- Recurrent network applications in hydrology
- Code demo and walkthrough
- Hands-on!

What does the society ask of hydrologists?

- Future trends/risks in hydrologic responses under climate change
- Short-term forecast/states update
- Gauged vs ungauged locations
- Uncertainty quantification
- Water interactions w/ ecosystem/human systems (ET, moisture, GW, etc)

Two case studies

Soil Moisture Active Passive (SMAP)

- Launched recently (2015/04)
- 2~3 days revisit time
- Senses moisture-dependent top surface soil
- Streamflow modeling (beyond CAMELS →3000 basins)
 - Daily data
 - Accompanying attributes

What is DL and why DL?

a rebranding of neural networks featuring

- (i) Large capacity
- (ii) Hidden layers that automatically extract features
- (iii) Improved architecture/regularization
- (iv) Working directly with data a primary value proposition is the avoidance of expertise!

Water Resources Research

AN AGU JOURNAL

Review Article 🛛 🖻 Open Access

A trans-disciplinary review of deep learning research and its relevance for water resources scientists

Chaopeng Shen 🔀

First published: 30 August 2018 | https://doi.org/10.1029/2018WR022643

 $X \rightarrow Y$

Some basic deep learning architectures

Long Short-Term Memory (LSTM)

Time Series Deep Learning (DL)

→ Free from structural assumptions

Self-learned Memory system

7

A hydrologic model w/o structural assumptions...

LSTM model

Atm. Forcings

(optional) Land Surface Model (Noah) solutions

Soil texture, slope, land cover, irrigation, depth to water table, etc

8

Long-term projections

Examined comparison with in-situ data & long-term projections

Geophysical Research Letters

Research Letter 🛛 🔂 Full Access

Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network

Kuai Fang, Chaopeng Shen 💌, Daniel Kifer, Xiao Yang

First published: 16 October 2017 | https://doi.org/10.1002/2017GL075619 | Cited by: 3

04/

Journals & Magazines > IEEE Transactions on Geoscien... > Early Access

The Value of SMAP for Long-Term Soil Moisture Estimation With the Help of Deep Learning

3 Author(s) Kuai Fang 🔟 ; Ming Pan ២ ; Chaopeng Shen ២ View All Authors

Comparison of Multi-year Trend of Root-zone Soil Moisture 2.5 **Core Validation Site** CRN Network 1.5 Sens Slope of LSTM [% / yr] Core Site 00 16020912 ****** 0 0.5 CRN 0 53927 Core Site -0.5 16040936 CRN -1.5 0 13301 -2 -1 0 1 2 Sens Slope of Site [% / yr]

Fang et al., 2018

Fang et al., 2017

Long-term projections

10

LSTM better than SAC-SMA at capturing the long-term trends

Short-term forecast

Traditional "data assimilation" scheme

Choices: covariance matrix, what to include, how to solve, bias correction, etc.

"Data Integration" (DI)

Observation → Corrected Simulation

Q^{t-1}, Q^{t-2}, etc

Forecast for streamflow

12

Feng, Shen et al., WRR, accepted, 2020 https://arxiv.org/abs/1912.08949

Forecast for (i) soil moisture (ii) streamflow

ror metrics of projection and forecast model

3d Forecast RMSE using DI-LSTM

<u>Home > JHM > Early Online Releases ></u> Near-real-time forecast of satellite-based soil moisture using long short-term m...

< Previous Article

0.06

-70

0.10

0.08

13

3d Forecast RMSE from Koster2017

Near-real-time forecast of satellite-based soil moisture using long short-term memory with an adaptive data integration kernel

Kuai Fang and Chaopeng Shen*

Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, Pennsylvania, USA.

https://doi.org/10.1175/JHM-D-19-0169.1 Published Online: 7 January 2020

https://sites.google.com/view/mhpi/locust

What about missing data? Extensive w/ SM

-- use LSTM as a forward extrapolator!

-- a general solution for time-stepping problems where input data stream is also the output.

X - model input
Y - model output
O - SMAP observation
dash lines - backward
solid lines - forward

Gradual convergence of forward extrapolation and DI training. H33A-04

Uncertainty estimation

15

Training

• 2015/04 - 2016/04

Validation

- 2016/04 2017/04
- hyper-parameter $(\sigma_{mc}$ is a function of the dropout rate)

Temporal test

- 2017/04 2018/04
- same pixels as training set

Under review, https://www.essoar.org/doi/10.1002/essoar.10503330.1

Interactions w/ ecosystem/biogeochemistry

How about variables we cannot observe accurately on large scales?

ET, Groundwater, deeper soil moisture

LSTM-based fPL scheme

From parameter calibration to → parameter learning (fPL)

16

Parameter learning (fPL) -- results

0.2

-0.1

17

- Stronger than SCE-UA!
- Saves O(10⁴) computation!
- Now capable of modeling other
 variables such as ET and/or streamflow

Uncalibrated variable: ET

Spatial extrapolation

Ongoing LSTM work beyond CAMELS

- LSTM can also model (small) reservoirs
- We can migrate knowledge across continents and support modeling in sparsely gauged sites.
- Great results with stream water temperature as well!

b0010 Mean ,epochs=2000 ,Hiddensize=100 ,RHO=365 ,Batches=158

Process-based modeling vs machine learning

Bottom up

==== **PBM** strength ====

- Built from the bottom-up to observe emergent patterns
- ▶ We know what we put in
- We can do experiments & identify causal relationships
- ===== Limitations ====
- Human biases
- Parameter calibration
- What we don't know?
- Errors compound?

- Built from the top-down, directly from observations → accurate
- Less biased
- Identify things we don't know?
 Highly efficient in computation
 ==== Limitations ======
 - Can't observe everything!
- May be difficult to interpret
- May not fully respect physical laws
- Does not understand causal relationships

Top down

Where to go from here?

- Hydrologic DL has launched a full-on assault to offer a full suite of hydrologic services with higher accuracy and lower cost.
- Time series DL will spread over to many geoscientific domains.
- DL will not replace PBM. On the contrary, there will be a class of unified model that links together PBM and DL.
- Powerful applications have emerged from hydrologic DL, while PINN near completes its proof of concept. In the future there PINN may see more growth.
- DL may be deeply ingrained into next generation models for science and practical operations

Perhaps one day DL will

become an inalienable

component of the hydrologic

discipline itself

Citation: Shen, C. (2018), Deep learning: A next-generation big-data approach for hydrology, *Eos, 99,* https://doi.org/10.1029/2018E0095649. Published on 25 April 2018.

20

Thank you!

https://github.com/mhpi

Shen Multi-scale Hydrology, Processes and Intelligence Group (MHPI)

http://water.engr.psu.edu/shen/hydroDL.html

<u>CUAHSI cyberseminar series</u> on BDML

WRR special issue on BDML

AGU Editor's review

Hydrol. Earth Syst. Sci., 22, 5639–5656, 2018 https://doi.org/10.5194/hess-22-5639-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

21

HESS Opinions: Incubating deep-learning-powered hydrologic

science advances as a community

Chaopeng Shen¹, Eric Laloy², Amin Elshorbagy³, Adrian Albert⁴, Jerad Bales⁵, Fi-John Chang⁶, Sangram Ganguly⁷, Kuo-Lin Hsu⁸, Daniel Kifer⁹, Zheng Fang¹⁰, Kuai Fang¹, Dongfeng Li¹⁰, Xiaodong Li¹¹, and Wen-Ping Tsai¹

Water Resources Research

REVIEW ARTICLE

10.1029/2018WR022643

Special Section:

Big Data & Machine Learning in Water Sciences: Recent Progress and Their Use in Advancing Science

A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists

Chaopeng Shen¹

¹Civil and Environmental Engineering, Pennsylvania State University, University Park, PA, USA

· → C 🔒 sites.google.com/view/deepldb

deepLDB

deepLDB -- a machine-learning-based Landslide database and modeling system

