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Deep Learning -- Success stories

Dexterity, OpenAI, 2019 GANs Face Generation, becominghuman.ai, 2019

http://www.youtube.com/watch?v=jwSbzNHGflM


Deep Learning -- Success stories

Self-driving Cars AI art and music



Deep Learning -- Success stories in science

Cancer detection Mapping the universe Predict protein structure

Land cover segmentation Drug discovery



Machine Learning vs. Deep Learning

5Fig credit: https://medium.com/intro-to-artificial-intelligence/deep-learning-series-1-intro-to-deep-learning-abb1780ee20

https://medium.com/intro-to-artificial-intelligence/deep-learning-series-1-intro-to-deep-learning-abb1780ee20


Outline
- Neural networks basics

- Neural networks optimization/training algorithms

- Monitoring neural networks training

- Convolutional neural networks basics

- Data normalization

- Learning rate decay, Batch-size schedule

- How to improve the generalization of your model? Regularization

- The importance and challenges of depth

- Transfer learning

- Some practical tips
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Resources and acknowledgments
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distill.pub

And hundreds of other great quality 
educational material and papers



Neural Networks history goes back to the 50s
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Fig. credit to Efstratios Gavves, Intro. to DL



Why do Neural Networks finally work now?
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1) Data: large curated datasets 2)  GPUs: linear algebra accelerators

3) Algorithmic advances: optimizers, regularization, normalization … etc.



What are Deep Neural Networks?

Long story short: 

“A family of parametric, non-linear and hierarchical representation learning 
functions, which are massively optimized with stochastic gradient descent to
encode domain knowledge, i.e. domain invariances, stationarity.” -- Efstratios 
Gavves
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Neural Networks basics
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Deep Forward Neural Networks (DNNs)

The objective of NNs is to approximate a function:

The NN learns an approximate function                          with parameters W. This 
approximator is hierarchically composed of simpler functions 
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Deep Forward Neural Networks (DNNs)
A common choice for the atomic functions is an affine transformation followed by a 
non-linearity (an activation function           ):

An optimization procedure is used to find network parameters, weights Ws and 
biases bs, that best approximate the relationship in the data, or “learn” the task.
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Some terminology (Fully Connected, or Dense networks)
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Weights

One hidden unit 
or a neuron



Activation functions
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Activation functions
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More terminology
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pre-activation

activation



Activation functions
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Activation functions
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Most commonly used in modern networks as 
hidden layer activations



Activation functions

21

Often used for output layers



What kind of functions can NNs approximate? 

The Universal Approximation Theorem 

“a single hidden layer neural network with 
a linear output unit can approximate any 
continuous function arbitrarily well, given 
enough hidden units” -- Hornik, 1991, 
http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf

This, of course, does not imply that we 
have an optimization algorithm that can 
find such a function. The layer could also 
be too large to be practical.
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Fig. credit towardsdatascience.com/can-neural-networks-really-learn-any-function-65e106617fc6

http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf
https://towardsdatascience.com/can-neural-networks-really-learn-any-function-65e106617fc6


Optimizing/training neural networks
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Cost function & Loss

To optimize the network parameters for the task at hand we build a cost function on 
the training dataset:

24

cost function: average of 
loss over many examples

loss function: compares 
model prediction to data

model prediction



Empirical Cost Minimization
The goal of machine learning is to build models that work well on unseen data, i.e. 
we hope to have a low cost on the data distribution             (to minimize the true
cost)
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Empirical Cost Minimization
The goal of machine learning is to build models that work well on unseen data, i.e. 
we hope to have a low cost on the data distribution             (to minimize the true
cost)

However, since we don’t have access to the data distribution we resort to reducing 
the cost on the training dataset              ; i.e. minimizing the empirical cost, with the 
hope that doing so gives us a model that generalizes well to unseen data.
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Gradient Descent

27

Gradient descent is the dominant method to 
optimize network parameters θ to minimize loss 
function L(θ). 

The update rule is (α is the “learning rate/step”):
θ* θ

Loss



Gradient Descent
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Gradient descent is the dominant method to 
optimize network parameters θ to minimize loss 
function L(θ). 

The update rule is (α is the “learning rate/step”):
θ* θ

Loss



Gradient estimation: Stochastic Gradient Descent
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To make a single gradient step, the gradient is taken over a “random” minibatch of 
examples m instead of the entire dataset

Gradient estimate



Gradient estimation: Stochastic Gradient Descent
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To make a single gradient step, the gradient is taken over a “random” minibatch of 
examples m instead of the entire dataset

Learning rate and minibatch 
size are hyper-parameters 

Gradient estimate



Cost function & Loss

31

Training Step

Lo
ss

Fig. credit: http://cs231n.github.io/neural-networks-3/



Stochastic Gradient Descent variants

32

Gradient descent can get trapped in the 
abundant saddle points, ravines and 
local minimas of neural networks loss 
functions.

VGG-56 loss landscape: arXiv:1712.09913

https://arxiv.org/abs/1712.09913


Stochastic Gradient Descent variants
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Gradient descent can get trapped in the 
abundant saddle points, ravines and 
local minimas of neural networks loss 
functions.

To accelerate the optimization on such 
functions we use a variety of methods:

● SGD + Momentum
● Nestrov
● AdaGrad
● RMSProp
● …
● Adam

Fig. credit ruder.io/optimizing-gradient-descent/

http://ruder.io/optimizing-gradient-descent/


Backpropagation
Updates to individual network parameters are propagated from the cost function 
through the network using the chain-rule of calculus. This is known is 
“backpropagation”.
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Backpropagation

35

Note that if any of the intermediate activations have too small 
derivatives or 0 (dead neurons) gradients will not flow back



Monitoring neural networks training
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Monitoring training/learning progress
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Training curves are evaluated 
on training dataset. 

Validation curves are evaluated 
on a development dataset.

A third “test” dataset is typically 
held out to the very end to 
evaluate the performance of the 
final model and compare to 
other models.



Monitoring training/learning progress

38

Underfitting: training loss is high

● check model architecture.

● check Learning Rate.

● train longer.

● check other hyper-
parameters.



Monitoring training/learning progress
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Underfitting: training loss is high

● check model architecture.

● check Learning Rate.

● train longer.

● check other hyper-
parameters.

Training and validation curves (loss 
or accuracy) are too similar is your 
first clue of an underfitting problem



Monitoring training/learning progress
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Overfitting: training loss is low, 
validation loss is high

● Do you have enough data?

● Can you employ data 
augmentation?

● Learning-Rate tuning. 
Other hyper-parameters

● Regularization techniques 
…

● Reduce model complexity

Generalization Gap



Monitoring training/learning progress
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Overfitting: training loss is low, 
validation loss is high

● Do you have enough data?

● Can you employ data 
augmentation?

● Learning-Rate tuning. 
Other hyper-parameters

● Regularization techniques 
…

● Reduce model complexity

Early 
Stopping



Connectivity and Model Architecture
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Connectivity

43

Every neuron is connected 
to all components of input 
vector. 

Fully Connected (Dense)



Connectivity
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Every neuron is connected 
to all components of input 
vector. 

Every neuron is only 
affected by a limited input 
“receptive field”; 3 in this 
example.

Fully Connected (Dense) Sparse connectivity



Connectivity
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Every neuron is connected 
to all components of input 
vector. 

Every neuron is only 
affected by a limited input 
“receptive field”; 3 in this 
example.

Fully Connected (Dense) Sparse connectivity Sparse connectivity 
+ parameter sharing

Parameters are 
shared (tied weights) 
across all neurons



Convolutional Neural Networks (CNNs)
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Sparse connectivity 
+ parameter sharing

Parameters are 
shared (tied weights) 
across all neurons

CNNs slide the same kernel of weights across 
their input, thus have local sparse connectivity 
and tied weights



Convolutional Neural Networks (CNNs)

CNNs implement the convolution 
operation over input. Sliding weights 
over input while computing dot 
product.

47Fig. credit: goo.gl/4Qgn5U

https://goo.gl/4Qgn5U


Convolutional Neural Networks (CNNs)

CNNs are translation equivariant by 
construction.

CNNs achieve: sparse connectivity, 
parameter sharing and translation 
equivariance.

48

Sliding convolution kernel with 
size 3x3 over an input of 7x7.

Fig. credit: github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic


More terminology

49Fig. credit: brilliant.org/wiki/convolutional-neural-network/

Input 
matrix Convolution 

kernel or filter

Feature map/ 
activation map

https://brilliant.org/wiki/convolutional-neural-network/


CNNs output dimensions

50Fig. credit: Lecture 5, CS231 Spring 2019

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf


CNNs output dimensions

51Fig. credit: Lecture 5, CS231 Spring 2019

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf


Pooling

52

Pooling layers replace their input by a summary statistic of the nearby pixels. 
Max-pool and Avg-pool are the most common pooling layers. 
Pooling helps make the model invariant to small local translations of input.

Pooling with kernel size 2



Strided convolutions

53

Strided convolutions are another way to reduce the spatial dimensionality of the 
feature maps, the intuition in using strided convolutions is to let the network learn 
the proper “pooling” function.

Kernel=3, stride=2 convolution



Let us put it all together: a typical CNN network architecture
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A schematic of VGG-16 Deep 
Convolutional Neural Network 
(DCNN) architecture trained on 
ImageNet (2014 ILSVRC winner)



And there’s more!

● Recurrent networks
○ Modeling time

● Transposed Convolutions
○ For image generation (also known as upsampling)

● Skip connections
○ Helps to train really massive networks 

● Geometric Deep Learning
○ Spherical convolutions, modeling groups, flows, etc 

● And more!



Demystifying the black box



What do CNNs “learn”? Feature visualization

57
mNeuron: A Matlab Plugin to Visualize Neurons from Deep Models vision03.csail.mit.edu/cnn_art/index.html

Low level 
feature 
detectors

High level 
feature 
detectors

http://vision03.csail.mit.edu/cnn_art/index.html
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Checkout these 
articles by Chris Olah 
et al on dstill.pub

http://dstill.pub


What are Deep Neural Networks?

Long story short: 

“A family of parametric, non-linear and hierarchical representation learning 
functions, which are massively optimized with stochastic gradient descent to
encode domain knowledge, i.e. domain invariances, stationarity.” -- Efstratios 
Gavves

59



A couple of practical tips
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Check loss at the beginning of training

When you start from randomly initialized weights you can expect your network to 
give random chance outputs, a helpful debugging step is to make sure the value of 
the loss function at beginning of the training makes sense.

For example, if you are using a negative log-likelihood for a 10-classes classification 
problem you expect you first loss to be

Remember to turn off any regularization for this check. 
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Make sure your network can overfit a tiny dataset first
Neural networks are over-parameterized functions, your model should have the 
representational capacity to overfit a tiny dataset. This is the first thing you should 
check. If your model can’t achieve a ~ 100% accuracy on a small dataset there 
is no point of trying to “learn” on the full dataset. Stop and debug your code!

62

Tiny dataset

100% 
accuracy

Loss on a small 
dataset
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http://karpathy.github.io/2019/04/25/recipe/

http://karpathy.github.io/2019/04/25/recipe/


BUT this stirring is damn hard!
64

xkcd.com/1838/

https://xkcd.com/1838/


Thank You



Data preprocessing

You don’t want your model to be 
too sensitive to the relative 
scales, if that is irrelevant.

“It only makes sense to apply 
this preprocessing if you have a 
reason to believe that different 
input features have different 
scales (or units), but they should 
be of approximately equal 
importance to the learning 
algorithm” -- CS231n notes
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Weights initialization
Neural networks weights have to be randomly initialized to break the symmetry

Normal distribution initialization with a constant σ works okay for small networks but 
kills gradients for deeper networks

For example, take initialization 

67

Tiny activations → tiny 
gradients

Example credit: CS231n, Spring 2019, Lecture 7

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture07.pdf


Weights initialization
Neural networks weights have to be randomly initialized to break the symmetry

Normal distribution initialization with a constant σ works okay for small networks but 
kills gradients for deeper networks

For example, take initialization 

68Example credit: CS231n, Spring 2019, Lecture 7

Activation saturate → zero gradients

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture07.pdf


Weights initialization
Xavier initialization gets around this issue: 

69Example credit: CS231n, Spring 2019, Lecture 7

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture07.pdf


Decaying learning rate
There are various learning rate schedules that are common in practice:
- Linear decay
- Exponential decay
- Cosine
- Inverse square-root

These are applied as a function of SGD step or epoch. For example, exponential 
decay would be: 

where:
α0 is the initial learning rate
t is the step or epoch number
T is the total number of steps or epochs.

70



Decaying learning rate

Another approach is to monitor the training curves and reduce the learning rates on 
plateaus, e.g. divide learning rate by 10 when validation error plateaus

71



An alternative could be to increase the batch-size

72



Regularization
Remember that the goal of learning, as opposed to traditional optimization, is to do 
well on an unseen data rather than too well on the training dataset.

We use regularization to try to prevent the model from overfitting the training dataset

73

Minibatch loss: try to fit 
well to the training data

Parameter norm 
penalty: don’t fit too 
well to the training data



Regularization
Remember that the goal of learning, as opposed to traditional optimization, is to do 
well on an unseen data rather than too well on the training dataset.

We use regularization to try to prevent the model from overfitting the training dataset

74

Minibatch loss: try to fit 
well to the training data

Parameter norm 
penalty: don’t fit too 
well to the training data



Dropout: How to train over-parameterized networks?

75

Dropout: randomly dropping out network 
connections with a fixed probability during training.



Data augmentation
The best approach to improve the 
performance of your model is to 
increase the size of the training 
dataset.

One can also augment the dataset 
by applying (sometimes random) 
transformations to the original data. 
Your task, and thus model, should 
be invariant to such 
transformations.

76Figure credit: Ahmad, Muhammad, Baik (2017). doi.org/10.1371/journal.pone.0183838

Examples of augmentation transformations, 
suitable transformations are data and task 
dependent.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183838


The importance of depth

77

Goodfellow et al. arXiv:1312.6082. And Deep Learning book, Goodfellow et al.

Number of layers

Accuracy of model increases as 
depth increases.

Deeper models outperform wider 
modes with the same total number 
of parameters.

Number of layers

https://arxiv.org/abs/1312.6082


Transfer Learning

78

Re-train one or more of the 
dense layers on your 
problem

Use pre-trained conv 
layers (feature 
extractors). You can 
also fine tune them on 
your data



Hyper-parameters Optimization (HPO)
Hyperparameters to tune: network architecture, learning rate, its decay schedule, 
regularization (L2/dropout strength)

Monitor activations distributions: useful to spot problems with initializations, too many 
dead activations … etc

Monitor update scales (gradients/weights ratio) should be ~0.001 - 0.01 of weights

79

More training tips: 



EXTRAS

80



More on activations: Rectified Linear Unit (ReLU)

81

- Always non-negative

- Computationally cheap

- Passes strong gradients for x > 0

- Dies for x < 0 → leads to neurons 
with sparse activity



More on activations: Leaky Rectified Linear Unit (ReLU)

82Fig credit: wangxinliu.com/machine%20learning/machine%20learning%20basic/research&study/NN1/

http://wangxinliu.com/machine%20learning/machine%20learning%20basic/research&study/NN1/


More on activations: Sigmoid

83

- Bounded between 0 and 1

- Useful to squash layer output to 
represent binary probability → 
Bernoulli output distribution

- Expensive to compute

- Saturates at low and high input 
values → small slopes → low 
gradient signal → needs a Log in the 
loss function to cancel the effect of 
the Exp



More on activations: Softmax

84

- Multinoulli output distribution → multi-
class output

- Produces a distribution over classes

- Predicted class is the one with the 
largest probability

- Needs a Log in the loss function to 
cancel the Exp

Fig. credit rinterested.github.io/statistics/softmax.html

http://rinterested.github.io/statistics/softmax.html
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