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Deep Learning -- Success stories
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Dexterity, OpenAl, 2019 GANSs Face Generation, becominghuman.ai, 2019


http://www.youtube.com/watch?v=jwSbzNHGflM

Deep Learning -- Success stories

Self-driving Cars Al art and music



Deep Learning -- Success stories in science
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Machine Learning vs. Deep Learning

Machine Learning

G — |y — 77—

Input Feature extraction Classification

Deep Learning

& — =757 — I

Input Feature extraction + Classification Output

H BERKELEY LAB Fig credit: https://medium.com/intro-to-artificial-intelligence/deep-learning-series-1-intro-to-deep-learning-abb1780ee20 §



https://medium.com/intro-to-artificial-intelligence/deep-learning-series-1-intro-to-deep-learning-abb1780ee20

Outline

- Neural networks basics

- Neural networks optimization/training algorithms

- Monitoring neural networks training

- Convolutional neural networks basics

- Data normalization

- Learning rate decay, Batch-size schedule

- How to improve the generalization of your model? Regularization
- The importance and challenges of depth

- Transfer learning

- Some practical tips
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Outline

- Neural networks basics
- Neural networks optimization/training algorithms
- Monitoring neural networks training

- Convolutional neural networks basics

Some practical tips
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Resources and acknowledgments

And hundreds of other great quality
educational material and papers

Lecture 1| Introduction to Convolutional Ne

1 Stanford University School of Engineering

:\_

e

Lecture 2 | Image Classification

i Lacture 2
2 Imege Clissfostion ppsies  Sianford University School of Engineering

> PLAY ALL

Lecture 3 | Loss Functions and Optimization

Stanford University 08231 n' 3 Stanford University School of Engineering

Spring 2017

16 videos + 454,286 views + Last updated on Aug 11, Lecture 4 | Introduction to Neural Networks

2017 4 '“;‘:i’gl"gf‘ln’:;“’ Stanford University School of Engineering o 3 a L . "‘- | T
— . HANNING

CS231n: Convolutional Neural Networks for Visual Lecture 5 | Convolutional Neural Networks

Recognition
5 Comoutional Neul Neworks Stanford University School of Engineering
Spring 2017 _m
http://cs231n.stanford.edu/ Lecture 6 | Training Neural Networks | d I Stl I I . p u b

Lecurs £
Teaining Meursl Natworka,
6 Part|

an Stanford University School of Engineering M a Ch i n e Lea rn i ng Resea rC h
Lecture 7 | Training Neural Networks Il ShOU|d Be Clea r, Dyna m IC a nd VIVId
Pat2 Stanford University School of Engineering D iSt il I | S H e re -to H el p .

o Anders Feder SUBSCRIBE
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Neural Networks history goes back to the 50s
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Why do Neural Networks finally work now?

1) Data: large curated datasets 2) GPUs: linear algebra accelerators
edurekal ILSVRC GPU Usage and Winning error rate
A == Number of entries using GPUs == Winning error %

Deep Learning 120 ==

90

Machine Learning .

Performance
Wmm‘ng error rate

30

Number of entries using GPUs

0 0

= 0
Amount of data 2010 2011 2012 2013 2014

Year

3) Algorithmic advances: optimizers, regularization, normalization ... etc.

B2l BERKELEY LAB
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What are Deep Neural Networks?

Long story short:

“A family of parametric, non-linear and hierarchical representation learning
functions, which are massively optimized with stochastic gradient descent to
encode domain knowledge, i.e. domain invariances, stationarity.” -- Efstratios
Gavves

B2l BERKELEY LAB
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Neural Networks basics

12



Deep Forward Neural Networks (DNNSs)

The objective of NNs is to approximate a function:
_px
y = f*(z)

The NN learns an approximate function Y = f(IB, W)with parameters W. This
approximator is hierarchically composed of simpler functions

y= T P ) )

B2l BERKELEY LAB
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Deep Forward Neural Networks (DNNSs)

A common choice for the atomic functions is an affine transformation followed by a
non-linearity (an activation function (p(m)):

Hidden
Layer 2

hl = (,O(Wl.’l? + bl)
ho = (,O(th1 + bg)

y = f(hn)

An optimization procedure is used to find network parameters, weights Ws and
biases bs, that best approximate the relationship in the data, or “learn” the task.

B2l BERKELEY LAB 14



Some terminology (Fully Connected, or Dense networks)

Hidden
Layer 2

Hidden

Layer 1 , . .
OO \ -
& S:t":l}%ﬂ\\\ a
N

) [ WD . ">
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------ A
ORI TV
NN /,’ -
/ Output

AN
A\Qg/ W, e
' . (7,3]

2
Weights 51 7, \
One hidden unit

or a neuron

Input
[N,4]

B2l BERKELEY LAB

15



Activation functions

weights
inputs

X

activation
functon
Weighted Sum

X

@ o
X activation
X

B2l BERKELEY LAB



Activation functions

weights
inputs

activation
functon

@ t—o
@ activation
-‘xj‘ L e i

Weighted Sum

Axon
terminals

X, Myelin sheath /\
—_
—_—
Input ,/ Output
. Dendrites .
Signals 3 Signals
—_
—
—_— Cell nucleus

Schematic of a biological neuron.

B2l BERKELEY LAB 17



More terminology

weights
inputs

X

activation
functon

Q|

activation

Weighted Sum

\

X

pre-activation

B2l BERKELEY LAB
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Activation functions

Sigmoid

o(z) = —

14e—=

tanh
tanh(z)

RelLU
max (0, x)

B2l BERKELEY LAB

I
| i -
s o k=3
5 = — -1 -
- - -
e o o

Leaky ReLU )
max(0.1z, z)

Maxout
max(w] T + by, wa x + by)

ELU )
T x>0
ae®—1) <0 - - io
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Activation functions

Sigmoid 1 Leaky ReLU
g max(0.1z, )
O'(Q?) T 14e "
6"" ) Maxout
tanh(x) e max(w{ & + by, wy = + ba)
RelLU / ELU J
T x>0
maX(Oa .'L') _ y {a(ex _ 1) <0 - - -

B2l BERKELEY LAB

Most commonly used in modern networks as
hidden layer activations

20



Activation functions

G;gnuﬁd W ‘\

o(x) = 1+i—m ‘

tanh |

tanh(z) = o
|

RelLU

max (0, x)

B2l BERKELEY LAB

Leaky RelLU
max(0.1z, x)

Maxout
max(w] T + by, wa x + by)

ELU
T x>0
ae®—1) <0 - - io

Often used for output layers

J
- = 10

21



What kind of functions can NNs approximate?

The Universal Approximation Theorem

“a single hidden layer neural network with i ) e e
a linear output unit can approximate any *‘ na(w) = Relu(~1.2¢ — 1.3)

. . . . . nz(r) = Relu(l.2z + 1)
continuous function arbitrarily well, given / na(@) = Relu(1.22 — .2)
enough hidden units” -- Hornik, 1991, ' ° )
http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf

Z(x) = —ny(x) — no(z) — ng(x)
This, of course, does not imply that we /f eyl nete)

have an Optlmlzatlon a|g0rlthm that Can Fig. credit towardsdatascience.com/can-neural-networks-really-learn-any-function-65e106617fc6
find such a function. The layer could also
be too large to be practical.

B2l BERKELEY LAB 22


http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf
https://towardsdatascience.com/can-neural-networks-really-learn-any-function-65e106617fc6

Optimizing/training neural networks

23



Cost function & Loss

To optimize the network parameters for the task at hand we build a cost function on

the training dataset:

J(W) =

/

cost function: average of
loss over many examples

B2l BERKELEY LAB

4"33 -~
Y pdata

loss function: compares
model prediction to data

\

model prediction

24



Empirical Cost Minimization

The goal of machine learning is to build models that work well on unseen data, i.e.
we hope to have a low cost on the data distribution Pdqtqa (to minimize the true

cost)

JH(W) = L ympaare L (S (25 W), y)

B2l BERKELEY LAB
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Empirical Cost Minimization

The goal of machine learning is to build models that work well on unseen data, i.e.
we hope to have a low cost on the data distribution Pdqtq (to minimize the true

cost)

T(W) =

Yo y~paara L(F (23 W), )

However, since we don’t have access to the data distribution we resort to reducing

the cost on the training dataset ﬁda,ta. ; I.e. minimizing the empirical cost, with the
hope that doing so gives us a model that generalizes well to unseen data.

J(W) =

B2l BERKELEY LAB

ﬂxayNﬁdataL(f(x; W)’ y)
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Gradient Descent

Learning step

Gradient descent is the dominant method to
optimize network parameters 8 to minimize loss |
function L(6).

Minimum

Random e*
initial value

The update rule is (a is the “learning rate/step”):

Wk+1 < Wk — OdVL(Wk)

B2l BERKELEY LAB



Gradient Descent

Gradient descent is the dominant method to
optimize network parameters 8 to minimize loss
function L(0).

The update rule is (a is the “learning rate/step”):

Wk+1 < Wk — OdVL(Wk)

B2l BERKELEY LAB

Loss

Learning step

Minimum

1
1
1
I
I
I
I
1
1
1
1

> 0

Random e*
initial value

28



Gradient estimation: Stochastic Gradient Descent

To make a single gradient step, the gradient is taken over a “random” minibatch of
examples m instead of the entire dataset

Gradient estimate

B2l BERKELEY LAB 29



Gradient estimation: Stochastic Gradient Descent

To make a single gradient step, the gradient is taken over a “random” minibatch of
examples m instead of the entire dataset

Gradient estimate

Learning rate and minibatch
size are hyper-parameters

B2l BERKELEY LAB 30



Cost function & Loss

TJW) = Eg ympgora L(F (25 W), y)

low learning rate

high learning rate

\*“—

good learning rate

L

Training Step

H BERKELEY LAB Fig. credit: http://cs231n.github.io/neural-networks-3/ 371



Stochastic Gradient Descent variants

Gradient descent can get trapped in the
abundant saddle points, ravines and
local minimas of neural networks loss
functions.

B2l BERKELEY LAB

VGG-56 loss landscape: arXiv:1712.09913

32


https://arxiv.org/abs/1712.09913

Stochastic Gradient Descent variants

= SGD

Gradient descent can get trapped in the : — mgwentum
abundant saddle points, ravines and — Adagrad
local minimas of neural networks loss ; RA:inanpergz
functions. , i
To accelerate the optimization on such l
functions we use a variety of methods: ” —

e SGD + Momentum 1.0

e Nestrov

e AdaGrad 15

e RMSProp

o ..

e Adam

ﬂ BERKELEY LAB Fig. credit ruder.io/optimizing-gradient-descent/ 33



http://ruder.io/optimizing-gradient-descent/

Backpropagation

Updates to individual network parameters are propagated from the cost function
through the network using the chain-rule of calculus. This is known is
“backpropagation”.

9z Oy oz

@ Oy Or Ow

W = @) (@) O (w)

B2l BERKELEY LAB
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Backpropagation

f(3) 0z

ow
f (2) — By 0z ow
D @) w)

Note that if any of the intermediate activations have too small
derivatives or 0 (dead neurons) gradients will not flow back

8z 0y oz

B2l BERKELEY LAB 35



Monitoring neural networks training

36



Monitoring training/learning progress

Training curves are evaluated
on training dataset.

Validation curves are evaluated
on a development dataset.

A third “test” dataset is typically
held out to the very end to
evaluate the performance of the
final model and compare to
other models.

B2l BERKELEY LAB

error

underfitting overfitting

validation error

training error

# Training Steps

37



Monitoring training/learning progress

underfitting overfitting

validation error

Underfitting: training loss is high
e check model architecture.

e check Learning Rate.

error

e train longer.

e check other hyper-
parameters.

training error

# Training Steps

B2l BERKELEY LAB 38



Monitoring training/learning progress

underfitting overfitting

validation error

Underfitting: training loss is high
e check model architecture.

e check Learning Rate.

error

e train longer.

e check other hyper-
parameters.

training error

Training and validation curves (loss
or accuracy) are too similar is your
first clue of an underfitting problem

# Training Steps

B2l BERKELEY LAB 39



Monitoring training/learning progress

Overfitting: training loss is low,
validation loss is high

e Do you have enough data?

e Can you employ data
augmentation?

e Learning-Rate tuning.
Other hyper-parameters
e Regularization techniques

e Reduce model complexity

B2l BERKELEY LAB

error

underfitting overfitting

validation error

Genel‘;alization Gap

training error

_______________

# Training Steps
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Monitoring training/learning progress

Overfitting: training loss is low,
validation loss is high

e Do you have enough data?

e Can you employ data
augmentation?

e Learning-Rate tuning.
Other hyper-parameters
e Regularization techniques

e Reduce model complexity

B2l BERKELEY LAB

error

underfitting overfitting

_______

. Early .
 Stopping

_______________

validation error

training error

# Training Steps

41



Connectivity and Model Architecture

42



Connectivity

Fully Connected (Dense)

Every neuron is connected
to all components of input
vector.

B2l BERKELEY LAB
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Connectivity

Fully Connected (Dense) Sparse connectivity

Every neuron is connected ~ Every neuron is only

to all components of input  affected by a limited input
vector. “receptive field”; 3 in this

xample.
B2l BERKELEY LAB exampie
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Connectivity

Sparse connectivity

Fully Connected (Dense) Sparse connectivity + parameter sharing

Every neuron is connected Every neuron is only Parameters are
to all components of input affected by a limited input shared (tied weights)
vector. “receptive field”; 3 in this across all neurons

example.

B2l BERKELEY LAB 45



Convolutional Neural Networks (CNNSs)

Sparse connectivity
+ parameter sharing

CNNs slide the same kernel of weights across Parametgrs are
their input, thus have local sparse connectivity shared (tied weights)
and tied weights across all neurons

B2l BERKELEY LAB
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Convolutional Neural Networks (CNNSs)

CNNs implement the convolution X1 (Xo (X5 Xa=
operation over input. Sliding weights ~ |Xs_|X7 |Xe |Xs W, W, X (X,

. . . ®© +B
over input while computing dot X12 | X11|X10 X5 WaWs| X6 X5
product. Xi16|X15/X14 | X13

F3 = Wix X3+ Wx Xs+W3x Xs+ Wyx Xe+ B
=B e

H BERKELEY LAB Fig. credit: goo.gl/4Qan5U 47



https://goo.gl/4Qgn5U

Convolutional Neural Networks (CNNSs)

CNNs are translation equivariant by
construction.

CNNs achieve: sparse connectivity,
parameter sharing and translation
equivariance.

Sliding convolution kernel with
size 3x3 over an input of 7x7.

ﬂ BERKELEY LAB Fig. credit: github.com/vdumoulin/conv_arithmetic 48



https://github.com/vdumoulin/conv_arithmetic

More terminology

. Convolution
kernel or filter

]
\§/ //
]
e
e il iy
=
Pl
T
Feature map/
activation map

H BERKELEY LAB Fig. credit: brilliant.org/wiki/convolutional-neural-network/ 49



https://brilliant.org/wiki/convolutional-neural-network/

CNNSs output dimensions

=\

—

V

~

B2l BERKELEY LAB

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

V-

V.

28

Fig. credit: Lecture 5, CS231 Spring 2019

50


http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf

CNNSs output dimensions

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:
activation maps

s 7

Convolution Layer

A A

3 6

28

We stack these up to get a “new image” of size 28x28x6!

20 BERKELEY LAB Fig. credit: Lecture 5, CS231 Spring 2019

51


http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf

Pooling

Pooling with kernel size 2

Average pooling Max pooling

Pooling layers replace their input by a summary statistic of the nearby pixels.
Max-pool and Avg-pool are the most common pooling layers.
Pooling helps make the model invariant to small local translations of input.

B2l BERKELEY LAB
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Strided convolutions

Kernel=3, stride=2 convolution

Strided convolutions are another way to reduce the spatial dimensionality of the
feature maps, the intuition in using strided convolutions is to let the network learn
the proper “pooling” function.

B2l BERKELEY LAB
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Let us put it all together: a typical CNN network architecture

Input Image ]

(None, 224, 224, 3)=

(None, 112, 112,

(None, 56, 56, 128

? .
3/ conv Bluckulﬁ“

N

4

Convolution2D |

[ Convolution2D |

MaxPooling2D
JJ
ﬂunwluﬁunlﬂ\'

r.omoluﬁunzn ]

[comanss

Com Blndt #2

Conv Block #3 “\"”

> =
MaxPooling2D
-

)

(None, 28, 28, 256) +

B2l BERKELEY LAB

=4

{
%

/" ConvBlock#a
ﬁ _
5
:

:
4

]

N

17
1

%

:

[=]
—

:
g

o

)

£
&

g
8

(None, 14, 14, 512)

(None, 25,088)

(F«w M\ ,-’fr Conv Block #5
)
g

|S’
|§
\—

A schematic of VGG-16 Deep
Convolutional Neural Network
(DCNN) architecture trained on
ImageNet (2014 ILSVRC winner)
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And there’s more!

e Recurrent networks
o Modeling time

e Transposed Convolutions
o For image generation (also known as upsampling)

e SKkip connections
o Helps to train really massive networks

e Geometric Deep Learning
o Spherical convolutions, modeling groups, flows, etc

e And more!

B2l BERKELEY LAB



Demystifying the black box



What do CNNs “learn”? Feature visualization

........................................... > deteCtOFS

13

Low level
feature
detectors
55
27
1 i h 4
. S NE g, S
224 T (i 5 — = 27
55

—
-

13

13

384

— -

b

Max

stride\] ¢ | Po°ling
224 of 4

Conv 1: Edge+Blob

B2l BERKELEY LAB

Max
pooling

Conv 3: Texture

Conv 5: Object Parts
mNeuron: A Matlab Plugin to Visualize Neurons from Deep Models vision03.csail.mit.edu/cnn_art/index.html

Numerical

Data-driven

High level
feature
13
13 dense dense
256 100¢
Max L}
pooling 4096 4096

cock

ship

Fc8: Object Classes

ajqe) Suruup

"
1
§
Z
3
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http://vision03.csail.mit.edu/cnn_art/index.html

Feature Visualization

How neural networks build up their understanding of images

Checkout these
articles by Chris Olah

et al on dstill.pub

Edaes (laver conv?dny

Textures (laver mixe

Exploring Neural Networks with
Activation Atlases

By using feature Mversion 1o visualize milions of activations fram an image
classification network, we create an explorable activation atlas of features the
network has leamned which can reveal how the network typically represents some

concepts

BERKELEY LAB

Bevowss s

The Building Blocks of Interpretability
Interpretability techniques are normally studied in isolation.

We explore the powerful interfaces that arise when you combine them —
and the rich structure of this combinatorial space.

3

y combining feature visualization (what
king for?) with attribution (how does it
ut?), we can explore how the network
cn labets iike Labrador retriever and

TMOST | \BRADOR RETRIEVER v

TIGER CAT v

1 of channel

58


http://dstill.pub

What are Deep Neural Networks?

Long story short:

“A family of parametric, non-linear and hierarchical representation learning
functions, which are massively optimized with stochastic gradient descent to
encode domain knowledge, i.e. domain invariances, stationarity.” -- Efstratios
Gavves

B2l BERKELEY LAB
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A couple of practical tips
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Check loss at the beginning of training

When you start from randomly initialized weights you can expect your network to
give random chance outputs, a helpful debugging step is to make sure the value of
the loss function at beginning of the training makes sense.

For example, if you are using a negative log-likelihood for a 10-classes classification
problem you expect you first loss to be ~ — log(1/C') = —log(1/10) ~ 2.3

° model.fit(train images[0:32], train labels[0:32], batch size=32, epochs=1)

32/32 |[==============================] - 05 2ms/sample | loss: 2.3919]- acc: 0.0625
<tensorflow.python.keras.callbacks.History at 0x7f4b7967T6d8>

Remember to turn off any regularization for this check.

B2l BERKELEY LAB 61



Make sure your network can overfit a tiny dataset first

Neural networks are over-parameterized functions, your model should have the
representational capacity to overfit a tiny dataset. This is the first thing you should
check. If your model can’t achieve a ~ 100% accuracy on a small dataset there
IS no point of trying to “learn” on the full dataset. Stop and debug your code!

Tiny dataset
_ 25
° h = model.fit(train images[0:32], train labels[0:32], batch size=4, epochs=1900,: verbose=1)
20
Epoch 1/1000 Loss on a small
32/32 [=== ===== ==] - 0s 3ms/sample - loss: 2.3887 - acc: 0.1562 151 dataset
Epoch 2/1000
32/32 [=== ===== ==] - O@s 501lus/sample - loss: 1.5197 - acc: 0.5312 101
Epoch 3/1000
32/32 [=== ===== ==] - ®s 717us/sample - loss: 1.1332 - acc: 0.6875 05
Epoch 4/1000
32/32 [=== ===== ==] - 0s 643us/sample - loss: 0.8480 - acc: 0.8438 00 : : : : :
Epoch 5/1000 ] 50 100 150 200 250 300
32/32 [=== ===== ==] - 0s 766us/sample - loss: 0.6225 - acc: 0.9062
Epoch 6/1000 0
32/32 [=== ===== ==] - 0s 608us/sample - loss: 0.5281 - acc: 0.9062 100%
Epoch 7/1000 accuracy
32/32 [=== ===== ==] - 0s 522us/sample - loss: 0.3970 - acc: 0.9688
Epoch 8/1000
32/32 [=== ===== ==] - O0s 502us/sample - loss: 0.3396 - acc: 1.0000

nnnnnnnnnnn

B2l BERKELEY LAB
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Andrej Karpathy blﬂg About  Hacker's guide to Neural Networks

A Recipe for Training Neural Networks

Apr 25, 2019

Some few weeks ago | posted a tweet on “the most commaon neural net mistakes”, listing a few common gotchas
related to training neural nets. The tweet got quite a bit more engagement than | anticipated (including a webinar
:)). Clearly, a lot of people have personally encountered the large gap between “here is how a convolutional layer
works” and “our convnet achieves state of the art results”.

So | thought it could be fun to brush off my dusty blog to expand my tweet to the long form that this topic
deserves. However, instead of going into an enumeration of more comman errors or fleshing them out, | wanted
to dig a bit deeper and talk about how one can avoid making these errors altogether (or fix them very fast). The
trick to doing so is to follow a certain process, which as far as | can tell is not very often documented. Let’s start
with two important observations that motivate it.

http://karpathy.qithub.io/2019/04/25/recipe/

B2l BERKELEY LAB 63


http://karpathy.github.io/2019/04/25/recipe/

B2l BERKELEY LAB

xkcd.com/1838/

THIS 15 YOUR MACHINE LEARNING SYSTETM?

YUP! YoU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LJRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

BUT this stirring is damn hard!

64


https://xkcd.com/1838/

Thank You

Office of

___..‘.".':‘__ U.S. DEPARTMENT OF
@ ENERGY science




Data preprocessing

You don’t want your model to be
too sensitive to the relative
scales, if that is irrelevant.

“It only makes sense to apply
this preprocessing if you have a
reason to believe that different
input features have different
scales (or units), but they should
be of approximately equal
Importance to the learning
algorithm” -- CS231n notes

B2l BERKELEY LAB

normalized data

X /= np.std(X, axis = 0)

original data zero-centered data

S
ey

X -= np.mean(X, axis = 0) .

original data decorrelated data whitened data

(covariance matrix is the
identity matrix)

(data has diagonal
covariance matrix)

66



Weights initialization

Neural networks weights have to be randomly initialized to break the symmetry

Normal distribution initialization with a constant o works okay for small networks but
kills gradients for deeper networks

For example, take initialization W ~ 001 X N(O, 1)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05

Tiny activations — tiny

gradients
B2l BERKELEY LAB Example credit: CS231n, Spring 2019, Lecture 7 67



http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture07.pdf

Weights initialization

Neural networks weights have to be randomly initialized to break the symmetry

Normal distribution initialization with a constant o works okay for small networks but
kills gradients for deeper networks

For example, take initialization W ~ 0.05 X N(O, 1)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.00 mean=-0.00 mean=0.00 mean=-0.00 mean=0.00 mean=-0.00
std=0.87 std=0.85 std=0.85 std=0.85 std=0.85 std=0.85

=1 0 1 -1 0 1 | 0 1 =1 0 1 -1 o 1 =1 0 1

Activation saturate — zero gradients

B2l BERKELEY LAB Example credit: CS231n, Spring 2019, Lecture 7 68



http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture07.pdf

Weights initialization

Xavier initialization gets around this issue:

1

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00
std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

-1 0 1 =] 0 1 =} 0 1 =] 0 1 =} 0 1

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

=} 0 1
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Decaying learning rate

There are various learning rate schedules that are common in practice:
- Linear decay
- Exponential decay
- Cosine
- Inverse square-root

These are applied as a function of SGD step or epoch. For example, exponential
decay would be: /

Oé:OéO(l—T)

where:

a, is the initial learning rate

t is the step or epoch number

T is the total number of steps or epochs.

B2l BERKELEY LAB
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Decaying learning rate

Training Loss

Reduce learning rate

|

reduce_lr = ReducelROnPlateau(monitor="val_loss', factor=8.2,
patience=5, min_lr=8.801)
model.fit(X_train, Y_train, callbacks=[reduce_1r])

0 20 40 60 80 100

Epoch

Another approach is to monitor the training curves and reduce the learning rates on
plateaus, e.g. divide learning rate by 10 when validation error plateaus
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An alternative could be to increase the batch-size

20

=
wn

—— Decaying learning rate
= Hybrid
-—— |ncreasing batch size

Training cross-entropy
a S

00
0 50 100 150 200

Number of epochs

arXiv.org > cs > arXiv:1711.00489

Computer Science > Machine Learning
Don't Decay the Learning Rate, Increase the Batch Size

Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, Quoc V. Le
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Regularization
Remember that the goal of learning, as opposed to traditional optimization, is to do
well on an unseen data rather than too well on the training dataset.

We use regularization to try to prevent the model from overfitting the training dataset

J(W,\) = % S™ L(ws; W) + AQ(W)
N . N J \ J

Minibatch loss: try to fit Parameter norm

well to the training data penalty: don't fit too
well to the training data
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well on an unseen data rather than too well on the training dataset.

We use regularization to try to prevent the model from overfitting the training dataset

J(W,\) = % S™ L(ws; W) + AQ(W)
N . N J \ J

Minibatch loss: try to fit Parameter norm

well to the training data penalty: don't fit too
well to the training data
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Dropout: How to train over-parameterized networks?

|
o Withoutdropout .

Ao [ s

! qu N Asd)
N:f 'l" I\ \ i X 'Af' g "(?p ‘-. IATRNED-TY AT

I ';-M'I'l. |

WA _ :

Classification Error %

VAN 1 1AL
VRS s g oy R 20
TN A AR A A A
r-h\'ﬂk'&‘gg_{ 7|

0 200000 400000 600000 800000 1000000
Number of weight updates

Dropout: randomly dropping out network
connections with a fixed probability during training.
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Data augmentation

Original Image

The best approach to improve the
performance of your model is to
increase the size of the training
dataset.

De-texturized

De-colorized

Data Augmentation

One can also augment the dataset
by applying (sometimes random)
transformations to the original data.

Edge Enhanced

Salient Edge Map

Your task, and thus model, should N “

. . / Flip/Rotate
be invariant to such \$.
transformations.

Examples of augmentation transformations,
suitable transformations are data and task
dependent.

B2 BERKELEY LAB Figure credit: Ahmad, Muhammad, Baik (2017). doi.org/10.1371/journal.pone.0183838 76
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The importance of depth

Number of layers
Goodfellow et al. arXiv:1312.6082. And Deep Learning book, Goodfellow et al.

96.5 T T T T T T T 97 T T T T
960 = 96l +—= |3, |convolutional |
E 95.5 § +—+ |3, [fully connected
g 95.0 & 95 |- V¥ |11} convolutional [
: 94.5 >,

g g N :
% 94.0 H
g 935 g 93 "\?_F .
E o : i /\\ |
92.5 =
92.0 ] ] ] ! ! ! ! 91 | I ! | L
3 4 5 6 7 8 9 10 11 0.0 0.2 0.4 0.6 0.8 1.0
Number of |aye|’s Number of parameters x10°
Accuracy of model increases as Deeper models outperform wider
depth increases. modes with the same total number

of parameters.
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Transfer Learning

( Input Image
/ [None, 224, 224, EIII""h /_ Conw!uuonz;\ \
£ (comaomao | || 5/ comonsors)
%fcumluﬂunm § Convolution2D
S| maxpoolingz0 | : Mupeing0 || Use pre-trained conv
frosn m“:—l_ 1 e one. 4 14,512 layers (feature
g ) PN el extractors). You can
E stk 3| Somistiont also fine tune them on
Maxpooling20 : _ Convolution20 | your data
.—‘/ MaxPooling2D
> —J"/Ilﬂﬂnl. 15,088) /
(e )
De
E’:“: ) Re-train one or more of the
\ i o ) dense layers on your
S - problem
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Hyper-parameters Optimization (HPO)

Hyperparameters to tune: network architecture, learning rate, its decay schedule,
regularization (L?/dropout strength)

More training tips:

Monitor activations distributions: useful to spot problems with initializations, too many
dead activations ... etc

Monitor update scales (gradients/weights ratio) should be ~0.001 - 0.01 of weights

B2l BERKELEY LAB
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EXTRAS
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More on activations: Rectified Linear Unit (ReLU)

f(x) &

- Always non-negative
- Computationally cheap 3-
- Passes strong gradients for x > 0 2

- Dies for x < 0 — leads to neurons "
with sparse activity

T T T T -
—4 -2 0 2 4 X

ReLU(z) = max(0, x)
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More on activations: Leaky Rectified Linear Unit (ReLU)

introduce a small slope
to keep the update alive

| )(k

—

Leaky ReLU(x) = max(ax, )
0<a<l1

...... il BERKELEY LAB Fig credit: wangxinliu.com/machine%20learning/machine%20learning%20basic/research&study/NN1/ 82
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More on activations: Sigmoid

-  Bounded between 0 and 1

- Useful to squash layer output to
represent binary probability —
Bernoulli output distribution

- Expensive to compute

- Saturates at low and high input
values — small slopes — low
gradient signal — needs a Log in the
loss function to cancel the effect of
the Exp

B2l BERKELEY LAB
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More on activations: Softmax

- Multinoulli output distribution — multi- bilities

class output

- Produces a distribution over classes

- Predicted class is the one with the
largest probability

- Needs a Log in the loss function to
cancel the Exp e~i

softmax(z); =
Zj e

H BERKELEY LAB Fig. credit rinterested.github.io/statistics/softmax.html 84
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