
Introduction to Deep Learning

Karthik Kashinath
NERSC

Created by: Mustafa Mustafa

AI4ESS Summer School
23, June 2020

Deep Learning -- Success stories

Dexterity, OpenAI, 2019 GANs Face Generation, becominghuman.ai, 2019

http://www.youtube.com/watch?v=jwSbzNHGflM

Deep Learning -- Success stories

Self-driving Cars AI art and music

Deep Learning -- Success stories in science

Cancer detection Mapping the universe Predict protein structure

Land cover segmentation Drug discovery

Machine Learning vs. Deep Learning

5Fig credit: https://medium.com/intro-to-artificial-intelligence/deep-learning-series-1-intro-to-deep-learning-abb1780ee20

https://medium.com/intro-to-artificial-intelligence/deep-learning-series-1-intro-to-deep-learning-abb1780ee20

Outline
- Neural networks basics

- Neural networks optimization/training algorithms

- Monitoring neural networks training

- Convolutional neural networks basics

- Data normalization

- Learning rate decay, Batch-size schedule

- How to improve the generalization of your model? Regularization

- The importance and challenges of depth

- Transfer learning

- Some practical tips

6

Outline
- Neural networks basics

- Neural networks optimization/training algorithms

- Monitoring neural networks training

- Convolutional neural networks basics

- Data normalization

- Learning rate decay, Batch-size schedule

- How to improve the generalization of your model? Regularization

- The importance and challenges of depth

- Transfer learning

- Some practical tips
7

Resources and acknowledgments

8

distill.pub

And hundreds of other great quality
educational material and papers

Neural Networks history goes back to the 50s

9

Fig. credit to Efstratios Gavves, Intro. to DL

Why do Neural Networks finally work now?

10

1) Data: large curated datasets 2) GPUs: linear algebra accelerators

3) Algorithmic advances: optimizers, regularization, normalization … etc.

What are Deep Neural Networks?

Long story short:

“A family of parametric, non-linear and hierarchical representation learning
functions, which are massively optimized with stochastic gradient descent to
encode domain knowledge, i.e. domain invariances, stationarity.” -- Efstratios
Gavves

11

Neural Networks basics

12

Deep Forward Neural Networks (DNNs)

The objective of NNs is to approximate a function:

The NN learns an approximate function with parameters W. This
approximator is hierarchically composed of simpler functions

13

Deep Forward Neural Networks (DNNs)
A common choice for the atomic functions is an affine transformation followed by a
non-linearity (an activation function):

An optimization procedure is used to find network parameters, weights Ws and
biases bs, that best approximate the relationship in the data, or “learn” the task.

14

Some terminology (Fully Connected, or Dense networks)

15

Weights

One hidden unit
or a neuron

Activation functions

16

Activation functions

17

More terminology

18

pre-activation

activation

Activation functions

19

Activation functions

20

Most commonly used in modern networks as
hidden layer activations

Activation functions

21

Often used for output layers

What kind of functions can NNs approximate?

The Universal Approximation Theorem

“a single hidden layer neural network with
a linear output unit can approximate any
continuous function arbitrarily well, given
enough hidden units” -- Hornik, 1991,
http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf

This, of course, does not imply that we
have an optimization algorithm that can
find such a function. The layer could also
be too large to be practical.

22

Fig. credit towardsdatascience.com/can-neural-networks-really-learn-any-function-65e106617fc6

http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf
https://towardsdatascience.com/can-neural-networks-really-learn-any-function-65e106617fc6

Optimizing/training neural networks

23

Cost function & Loss

To optimize the network parameters for the task at hand we build a cost function on
the training dataset:

24

cost function: average of
loss over many examples

loss function: compares
model prediction to data

model prediction

Empirical Cost Minimization
The goal of machine learning is to build models that work well on unseen data, i.e.
we hope to have a low cost on the data distribution (to minimize the true
cost)

25

Empirical Cost Minimization
The goal of machine learning is to build models that work well on unseen data, i.e.
we hope to have a low cost on the data distribution (to minimize the true
cost)

However, since we don’t have access to the data distribution we resort to reducing
the cost on the training dataset ; i.e. minimizing the empirical cost, with the
hope that doing so gives us a model that generalizes well to unseen data.

26

Gradient Descent

27

Gradient descent is the dominant method to
optimize network parameters θ to minimize loss
function L(θ).

The update rule is (α is the “learning rate/step”):
θ* θ

Loss

Gradient Descent

28

Gradient descent is the dominant method to
optimize network parameters θ to minimize loss
function L(θ).

The update rule is (α is the “learning rate/step”):
θ* θ

Loss

Gradient estimation: Stochastic Gradient Descent

29

To make a single gradient step, the gradient is taken over a “random” minibatch of
examples m instead of the entire dataset

Gradient estimate

Gradient estimation: Stochastic Gradient Descent

30

To make a single gradient step, the gradient is taken over a “random” minibatch of
examples m instead of the entire dataset

Learning rate and minibatch
size are hyper-parameters

Gradient estimate

Cost function & Loss

31

Training Step

Lo
ss

Fig. credit: http://cs231n.github.io/neural-networks-3/

Stochastic Gradient Descent variants

32

Gradient descent can get trapped in the
abundant saddle points, ravines and
local minimas of neural networks loss
functions.

VGG-56 loss landscape: arXiv:1712.09913

https://arxiv.org/abs/1712.09913

Stochastic Gradient Descent variants

33

Gradient descent can get trapped in the
abundant saddle points, ravines and
local minimas of neural networks loss
functions.

To accelerate the optimization on such
functions we use a variety of methods:

● SGD + Momentum
● Nestrov
● AdaGrad
● RMSProp
● …
● Adam

Fig. credit ruder.io/optimizing-gradient-descent/

http://ruder.io/optimizing-gradient-descent/

Backpropagation
Updates to individual network parameters are propagated from the cost function
through the network using the chain-rule of calculus. This is known is
“backpropagation”.

34

Backpropagation

35

Note that if any of the intermediate activations have too small
derivatives or 0 (dead neurons) gradients will not flow back

Monitoring neural networks training

36

Monitoring training/learning progress

37

Training curves are evaluated
on training dataset.

Validation curves are evaluated
on a development dataset.

A third “test” dataset is typically
held out to the very end to
evaluate the performance of the
final model and compare to
other models.

Monitoring training/learning progress

38

Underfitting: training loss is high

● check model architecture.

● check Learning Rate.

● train longer.

● check other hyper-
parameters.

Monitoring training/learning progress

39

Underfitting: training loss is high

● check model architecture.

● check Learning Rate.

● train longer.

● check other hyper-
parameters.

Training and validation curves (loss
or accuracy) are too similar is your
first clue of an underfitting problem

Monitoring training/learning progress

40

Overfitting: training loss is low,
validation loss is high

● Do you have enough data?

● Can you employ data
augmentation?

● Learning-Rate tuning.
Other hyper-parameters

● Regularization techniques
…

● Reduce model complexity

Generalization Gap

Monitoring training/learning progress

41

Overfitting: training loss is low,
validation loss is high

● Do you have enough data?

● Can you employ data
augmentation?

● Learning-Rate tuning.
Other hyper-parameters

● Regularization techniques
…

● Reduce model complexity

Early
Stopping

Connectivity and Model Architecture

42

Connectivity

43

Every neuron is connected
to all components of input
vector.

Fully Connected (Dense)

Connectivity

44

Every neuron is connected
to all components of input
vector.

Every neuron is only
affected by a limited input
“receptive field”; 3 in this
example.

Fully Connected (Dense) Sparse connectivity

Connectivity

45

Every neuron is connected
to all components of input
vector.

Every neuron is only
affected by a limited input
“receptive field”; 3 in this
example.

Fully Connected (Dense) Sparse connectivity Sparse connectivity
+ parameter sharing

Parameters are
shared (tied weights)
across all neurons

Convolutional Neural Networks (CNNs)

46

Sparse connectivity
+ parameter sharing

Parameters are
shared (tied weights)
across all neurons

CNNs slide the same kernel of weights across
their input, thus have local sparse connectivity
and tied weights

Convolutional Neural Networks (CNNs)

CNNs implement the convolution
operation over input. Sliding weights
over input while computing dot
product.

47Fig. credit: goo.gl/4Qgn5U

https://goo.gl/4Qgn5U

Convolutional Neural Networks (CNNs)

CNNs are translation equivariant by
construction.

CNNs achieve: sparse connectivity,
parameter sharing and translation
equivariance.

48

Sliding convolution kernel with
size 3x3 over an input of 7x7.

Fig. credit: github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic

More terminology

49Fig. credit: brilliant.org/wiki/convolutional-neural-network/

Input
matrix Convolution

kernel or filter

Feature map/
activation map

https://brilliant.org/wiki/convolutional-neural-network/

CNNs output dimensions

50Fig. credit: Lecture 5, CS231 Spring 2019

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf

CNNs output dimensions

51Fig. credit: Lecture 5, CS231 Spring 2019

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf

Pooling

52

Pooling layers replace their input by a summary statistic of the nearby pixels.
Max-pool and Avg-pool are the most common pooling layers.
Pooling helps make the model invariant to small local translations of input.

Pooling with kernel size 2

Strided convolutions

53

Strided convolutions are another way to reduce the spatial dimensionality of the
feature maps, the intuition in using strided convolutions is to let the network learn
the proper “pooling” function.

Kernel=3, stride=2 convolution

Let us put it all together: a typical CNN network architecture

54

A schematic of VGG-16 Deep
Convolutional Neural Network
(DCNN) architecture trained on
ImageNet (2014 ILSVRC winner)

And there’s more!

● Recurrent networks
○ Modeling time

● Transposed Convolutions
○ For image generation (also known as upsampling)

● Skip connections
○ Helps to train really massive networks

● Geometric Deep Learning
○ Spherical convolutions, modeling groups, flows, etc

● And more!

Demystifying the black box

What do CNNs “learn”? Feature visualization

57
mNeuron: A Matlab Plugin to Visualize Neurons from Deep Models vision03.csail.mit.edu/cnn_art/index.html

Low level
feature
detectors

High level
feature
detectors

http://vision03.csail.mit.edu/cnn_art/index.html

58

Checkout these
articles by Chris Olah
et al on dstill.pub

http://dstill.pub

What are Deep Neural Networks?

Long story short:

“A family of parametric, non-linear and hierarchical representation learning
functions, which are massively optimized with stochastic gradient descent to
encode domain knowledge, i.e. domain invariances, stationarity.” -- Efstratios
Gavves

59

A couple of practical tips

60

Check loss at the beginning of training

When you start from randomly initialized weights you can expect your network to
give random chance outputs, a helpful debugging step is to make sure the value of
the loss function at beginning of the training makes sense.

For example, if you are using a negative log-likelihood for a 10-classes classification
problem you expect you first loss to be

Remember to turn off any regularization for this check.

61

Make sure your network can overfit a tiny dataset first
Neural networks are over-parameterized functions, your model should have the
representational capacity to overfit a tiny dataset. This is the first thing you should
check. If your model can’t achieve a ~ 100% accuracy on a small dataset there
is no point of trying to “learn” on the full dataset. Stop and debug your code!

62

Tiny dataset

100%
accuracy

Loss on a small
dataset

63

http://karpathy.github.io/2019/04/25/recipe/

http://karpathy.github.io/2019/04/25/recipe/

BUT this stirring is damn hard!
64

xkcd.com/1838/

https://xkcd.com/1838/

Thank You

Data preprocessing

You don’t want your model to be
too sensitive to the relative
scales, if that is irrelevant.

“It only makes sense to apply
this preprocessing if you have a
reason to believe that different
input features have different
scales (or units), but they should
be of approximately equal
importance to the learning
algorithm” -- CS231n notes

66

Weights initialization
Neural networks weights have to be randomly initialized to break the symmetry

Normal distribution initialization with a constant σ works okay for small networks but
kills gradients for deeper networks

For example, take initialization

67

Tiny activations → tiny
gradients

Example credit: CS231n, Spring 2019, Lecture 7

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture07.pdf

Weights initialization
Neural networks weights have to be randomly initialized to break the symmetry

Normal distribution initialization with a constant σ works okay for small networks but
kills gradients for deeper networks

For example, take initialization

68Example credit: CS231n, Spring 2019, Lecture 7

Activation saturate → zero gradients

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture07.pdf

Weights initialization
Xavier initialization gets around this issue:

69Example credit: CS231n, Spring 2019, Lecture 7

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture07.pdf

Decaying learning rate
There are various learning rate schedules that are common in practice:
- Linear decay
- Exponential decay
- Cosine
- Inverse square-root

These are applied as a function of SGD step or epoch. For example, exponential
decay would be:

where:
α0 is the initial learning rate
t is the step or epoch number
T is the total number of steps or epochs.

70

Decaying learning rate

Another approach is to monitor the training curves and reduce the learning rates on
plateaus, e.g. divide learning rate by 10 when validation error plateaus

71

An alternative could be to increase the batch-size

72

Regularization
Remember that the goal of learning, as opposed to traditional optimization, is to do
well on an unseen data rather than too well on the training dataset.

We use regularization to try to prevent the model from overfitting the training dataset

73

Minibatch loss: try to fit
well to the training data

Parameter norm
penalty: don’t fit too
well to the training data

Regularization
Remember that the goal of learning, as opposed to traditional optimization, is to do
well on an unseen data rather than too well on the training dataset.

We use regularization to try to prevent the model from overfitting the training dataset

74

Minibatch loss: try to fit
well to the training data

Parameter norm
penalty: don’t fit too
well to the training data

Dropout: How to train over-parameterized networks?

75

Dropout: randomly dropping out network
connections with a fixed probability during training.

Data augmentation
The best approach to improve the
performance of your model is to
increase the size of the training
dataset.

One can also augment the dataset
by applying (sometimes random)
transformations to the original data.
Your task, and thus model, should
be invariant to such
transformations.

76Figure credit: Ahmad, Muhammad, Baik (2017). doi.org/10.1371/journal.pone.0183838

Examples of augmentation transformations,
suitable transformations are data and task
dependent.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183838

The importance of depth

77

Goodfellow et al. arXiv:1312.6082. And Deep Learning book, Goodfellow et al.

Number of layers

Accuracy of model increases as
depth increases.

Deeper models outperform wider
modes with the same total number
of parameters.

Number of layers

https://arxiv.org/abs/1312.6082

Transfer Learning

78

Re-train one or more of the
dense layers on your
problem

Use pre-trained conv
layers (feature
extractors). You can
also fine tune them on
your data

Hyper-parameters Optimization (HPO)
Hyperparameters to tune: network architecture, learning rate, its decay schedule,
regularization (L2/dropout strength)

Monitor activations distributions: useful to spot problems with initializations, too many
dead activations … etc

Monitor update scales (gradients/weights ratio) should be ~0.001 - 0.01 of weights

79

More training tips:

EXTRAS

80

More on activations: Rectified Linear Unit (ReLU)

81

- Always non-negative

- Computationally cheap

- Passes strong gradients for x > 0

- Dies for x < 0 → leads to neurons
with sparse activity

More on activations: Leaky Rectified Linear Unit (ReLU)

82Fig credit: wangxinliu.com/machine%20learning/machine%20learning%20basic/research&study/NN1/

http://wangxinliu.com/machine%20learning/machine%20learning%20basic/research&study/NN1/

More on activations: Sigmoid

83

- Bounded between 0 and 1

- Useful to squash layer output to
represent binary probability →
Bernoulli output distribution

- Expensive to compute

- Saturates at low and high input
values → small slopes → low
gradient signal → needs a Log in the
loss function to cancel the effect of
the Exp

More on activations: Softmax

84

- Multinoulli output distribution → multi-
class output

- Produces a distribution over classes

- Predicted class is the one with the
largest probability

- Needs a Log in the loss function to
cancel the Exp

Fig. credit rinterested.github.io/statistics/softmax.html

http://rinterested.github.io/statistics/softmax.html

	Introduction to Deep Learning
	Deep Learning -- Success stories
	Deep Learning -- Success stories
	Deep Learning -- Success stories in science
	Machine Learning vs. Deep Learning
	Outline
	Outline
	Resources and acknowledgments
	Neural Networks history goes back to the 50s
	Why do Neural Networks finally work now?
	What are Deep Neural Networks?
	Neural Networks basics
	Deep Forward Neural Networks (DNNs)
	Deep Forward Neural Networks (DNNs)
	Some terminology (Fully Connected, or Dense networks)
	Activation functions
	Activation functions
	More terminology
	Activation functions
	Activation functions
	Activation functions
	What kind of functions can NNs approximate?
	Optimizing/training neural networks
	Cost function & Loss
	Empirical Cost Minimization
	Empirical Cost Minimization
	Gradient Descent
	Gradient Descent
	Gradient estimation: Stochastic Gradient Descent
	Gradient estimation: Stochastic Gradient Descent
	Cost function & Loss
	Stochastic Gradient Descent variants
	Stochastic Gradient Descent variants
	Backpropagation
	Backpropagation
	Monitoring neural networks training
	Monitoring training/learning progress
	Monitoring training/learning progress
	Monitoring training/learning progress
	Monitoring training/learning progress
	Monitoring training/learning progress
	Connectivity and Model Architecture
	Connectivity
	Connectivity
	Connectivity
	Convolutional Neural Networks (CNNs)
	Convolutional Neural Networks (CNNs)
	Convolutional Neural Networks (CNNs)
	More terminology
	CNNs output dimensions
	CNNs output dimensions
	Pooling
	Strided convolutions
	Let us put it all together: a typical CNN network architecture
	And there’s more!
	Demystifying the black box
	What do CNNs “learn”? Feature visualization
	Slide Number 58
	What are Deep Neural Networks?
	A couple of practical tips
	Check loss at the beginning of training
	Make sure your network can overfit a tiny dataset first
	Slide Number 63
	BUT this stirring is damn hard!
	Slide Number 65
	Data preprocessing
	Weights initialization
	Weights initialization
	Weights initialization
	Decaying learning rate
	Decaying learning rate
	An alternative could be to increase the batch-size
	Regularization
	Regularization
	Dropout: How to train over-parameterized networks?
	Data augmentation
	The importance of depth
	Transfer Learning
	Hyper-parameters Optimization (HPO)
	EXTRAS
	More on activations: Rectified Linear Unit (ReLU)
	More on activations: Leaky Rectified Linear Unit (ReLU)
	More on activations: Sigmoid
	More on activations: Softmax

