Machine Learning Data Commons Web Portal

Developing a ML tutorial using a GECKO-A dataset

Omar Chaarawi, CU Boulder & SIParCS July 27, 2021

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Motivation

Previous tutorials developed:

- Artificial Intelligence for Earth Systems Science (AI4ESS) Summer School
- AMS ML Short Course

+ Code	+ Tex	a copy to	Danie									/ Editing	
0		Time [5] 1	Precursor [ug/m3]	Gas [ug/m3]	Aerosol [ug_m3]	temperature (K)	solar zemith angle (degree)	pre-existing aerosols (ug/m3)	o3 (ppb)	nox (ppb)	oh (10^6 molec/cm3)		
0	count	1.400000e+03	1400.000000	1400.000000	1400.000000	1400.000000	1400.000000	1400.000000	1400.000000	1400.000000	1400.000000		
	mean	2.160005e+05	0.003125	0.027601	0.032703	277.413314	44.923263	11.388653	75.422052	2.124920	5.493831		
	std	2.329138e-10	0.002215	0.013710	0.020581	21.712817	26.064725	21.082845	43.495636	2.468413	2.582480		
	min	2.160005e+05	0.001244	0.004393	0.001704	240.024774	0.018612	0.010031	1.017131	0.100186	1.011878		
	25%	2.160005e+05	0.001598	0.016943	0.015331	258.824046	22.235231	0.099235	36.417272	0.314910	3.231017		
	50%	2.160005e+05	0.002253	0.024975	0.028837	277.096217	44.858750	1.085965	76.044879	1.004467	5.479992		
	75%	2.160005e+05	0.003803	0.035183	0.048352	296.098148	68.039551	10.946353	112.534705	3.059370	7.758317		
	max	2.160005e+05	0.012054	0.079415	0.086156	044 000547	00.050054						
	<pre># Spagh num_exps exps = plot_df fig, ax for i,1 for</pre>	etti plot ran piriments = 30 sorted(random = train.loc; = plt.subplo ab in euumra exp in exps: ax[i].plot(p	dom experiment tis sample(list(trais train['id'].isin() tts(],1, figsize=(tts(['Precursor [w lot_df[plot_df['];	<pre>meseries s['id'].unique sxps)].reset_; 12,14)) p/m3]', 'Gas d'] == exp].ii</pre>	e()), num_expirim index(drop=True) [ug/m3]', 'Aeroso loc[1,0], plot_df	<pre>ald.B004/ ents)) 1 (og/m3)')): (plot_df['id'] =</pre>	* exp].iloc[:,i+1]}	99.280288	149.927193	9.980638	9,999925		
	<pre># Spagh num_exp exps = plot_df fig, ax for i,1 for ax[ax[</pre>	etti plot ran siriments = 30 sorted(random = train.loc[:= plt.subplo ab in enuera exp in exps: ax[i].plot(p i].set_xlabel i].set_ylabel	<pre>dom experiment til .sample(list(train train['id'].imin() ts(3,1, figsize=(te(['Precursor [w lot_df[plot_df['ii ('Elapsed Time [s .(lab, fontsize=16)</pre>	<pre>neseries n['id'].uniqus sxps]].reset_] 12,14)) g/m3]', 'Gas d'] == exp].ii))</pre>	e()), num_expirim index(drop=True) [ug/m3]', 'Aeroso Loc[1,0], plot_df	<pre>antabasi ents)) [plot_df['id'] =</pre>	sidede4	99.290288	149.927193	9.960638	9.999025		
	Spagh num_exp exps = plot_df fig, ax for i,1 for ax[0.07 - [[[[[[[[[[[[] [] 0.03 - 0.03 - 0.03 - 0.03 - 0.03 - 0.03 - 0.03 - 0.03 - 0.04 - 0.05 -	etti plot rans irinenta = 10 sorted(randor = train.loef = plt.subplot ab in ecumerate ab in ecumerate ar(i).plot(p i).setylabel i).setylabel	dom experiment til .emple(list(trai) .trais['id'].isia(trais['id'].isia(trais['id'].isia(trais['id'].isia(trais['id'].isia(trais['id'].isia('id').isia('id'	<pre>sesseries ('id').emique sesseries ('id').emique y(n3)', 'Cas d'] == exp].i) </pre>	a()), num_expirim index(drop-True) (ug/m3)', 'Aeroso Loc[1,0], plot_df	<pre>sidested ents)) 1 (og/m1)')): [plot_df['id'] =</pre>	• emp).iloc(1,i+2))	60.20088	149.92/193	9.460438	9.99923		

AI4ESS Hackathon made use of GECKO-A data, but is not introductory level course

Goal: Combine principles of hackathon notebook and AMS ML Short course to develop introductory ML courses that utilize GECKO-A data

GECKO-A Data

GECKO-A is a hyper-explicit mechanism for determining quantities of chemical precursor present in the atmosphere

Quantities of chemical precursors play a role in climate through both direct and indirect radiation effects

Accurate predictions of aerosolized quantities of VOCs might improve climate prediction models, though GECKO-A is far too computationally expensive

ML Techniques could be used to create an emulator that would generate data close enough to explicit models that it would be useful in developing climate models

Suggested Layout for ML Tutorials

How would a ML scientist approach the GECKO-A emulator problem?

Notebook 1:

- Gathering Data
- **Preparing Data**

Notebook 2:

- Choosing a model ٠
- Training that model using our ٠ data

data for each feature distributed?

Notebook 3:

- Evaluating that model
- **Tuning parameters**

Notebook 4:

Predict ٠

Data Distributions

Tools of the trade are used to better distribute the data

Data Distributions

Log transform followed by a z-score standardization allows for a more normal distribution

PCA Visualization and Exploration

Correlation Matrix before PCA

Correlation Matrix of inverse transform after PCA

Shows the possibility for aggregation of some data (reduce dimension)

PCA Visualization and Exploration

Much of the information can be explained using only 10 principal components

Reasonable to aggregate some of the data. Summing was used in practice, but option to further explore PCA

Choosing a model

Linear Regression on unscaled data

Linear Regression on scaled data

- Different methods for scaling are discussed and their effect on building a model reflected through comparison
- Even minor improvements draw out major data incites
- Performing a log transform on some features allowed us to capture the diurnal signal of the data, which is not an easy task

Choosing a model

- Though linear models are often the easiest start with, they have limits
- May not be the best model for the problem at hand
- How do you show that you have exhausted a model

- Ridge regression at alpha=200
- Shows improvement in prediction of aerosol with only small cost in accuracy for other components

We have essentially exhausted a linear model and can move on to others

Choosing a model

The goal of the tutorial is to lead the user to a model that performs as well as the model developed by the AIML group

There is room for further exploration. The PCA route is still underdeveloped

Could a user improve the linear models using PCA to aggregate features, rather than summing the bins?

Future Direction

Finish and release tutorial

Tutorials will be released as a self-guided set of Jupyter Notebook tutorials with publicly available GECKO-A data.

Google Collab

Tutorials developed in Jupyter will be migrated to Google Collab and tested in that environment.

Test in an off-premises environment

The tutorials have so far been developed in NCAR's Casper supercomputer. Testing needs to be done to insure the tutorials remain accessible in a local environment.

Discontinuation of the "Iris" Dataset

The popular dataset is problematic because of historical reasons and does not make for an appropriate dataset for a tutorial. Examples using this dataset will be removed and replaced.

Acknowledgements

David John Gagne

John Schreck

The AIML group

SIParCS program

NCAR, UCAR

