Testing Machine Learning for Regional Climate Applications in the Pacific Northwest

Katrina Wheelan
Rachel McCrary Ethan Gutmann
SIParCS

July 31, 2019

We need more detailed precipitation data than RCMs can directly provide

Climate Model Native Resolution and Application Resolution

Data Details

Observations

- Maurer gridded observed precipitation.
- ½ degree (~12km) US-wide data.
- Covers 1980-2010.

Regional Climate Model Output

- All simulations are part of NA-CORDEX.
- ERA-Interim driven WRF simulations at 50km. Simulations run over 1980-2010.
- MPI GCM driven WRF simulations at 50km.
- Historical period is 1976-2005.
- Future period is 2070-2099.
- RCP8.5 climate scenario from CMIP5.

Focusing on the Pacific Northwest

Three methods for statistical downscaling

- 1. Cellwise Linear Regression
- 2. Cellwise Random Forests
- 3. Convolutional Neural Network

1. Cellwise Linear Regression - the details

1. Cellwise Linear Regression - the results

A decision tree

Traversing a decision tree

A random forest

Traversing a random forest

2. Cellwise Random Forest - the results

3. Convolutional Neural Network - the details

1 _{×1}	1 _{×0}	1,	0	0
O _{×0}	1,	1 _{×0}	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6

https://hackernoon.com/visualizing-parts-of-convolutional-neural-networks-using-keras-and-cats-5cc01b214e59

3. Convolutional Neural Network - the results

Models underpredict extreme precipitation events

The underprediction comes from the distributions

Historical Climate Evaluation

Difference Plots: More intense, less frequent precipitation

Future (2070-2099) precip intensity minus historical (1976-2005), mm/day

RCM

U-net

Future (2070-2099) frequency minus historical (1976-2005), change in days with non-zero precip

- 0.3

- 0.2

0.1

0.0

-0.1

-0.2

-0.3

Difference Plots: More intense, less frequent precipitation

Future (2070-2099) frequency minus historical (1976-2005), change in days with non-zero precip

Conclusions and Future Work

Conclusions

- We implemented three methods for statistical downscaling
- Random forests best capture magnitude and variability of precipitation
- The U-Net and linear models underpredict variation and, as a result, magnitude
- Downscaling future WRF simulations suggests an increase in average and a decrease in frequency of precipitation

Future Works

- Adding stochasticity to zero/non-zero precipitation binary
- Further optimizing the U-Net

Acknowledgements

NCAR CISL

Rachel McCrary
Ethan Gutmann
David John Gagne
A.J. Lauer
Virginia Do
Eliott Foust

SIParCS NCAR/UCAR NSF

Extra Slides: Scaling the Models

Extra slides: a U-Net example

Extra Slides: Topography

Extra Slides: Frequency of Precipitation

1.0

Observed Probability of Prcp

RCM Probability of Prcp

Extra Slides: Future Precipitation Trends

Extra Slides: Distribution Stats

Model	Mean	50th percentile	95th percentile	Variance
Observations	2.75	0.12	10.42	39.61
RCM	2.70	0.74	10.29	32.24
Linear Regression	2.06	1.51	9.18	7.59
Random Forest	2.51	0.26	11.33	24.81
U-Net	1.56	0.09	8.40	13.80