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Two main time scales for forecasting:

Weather <= 10 day prediction, or
what is currently happening in the
atmosphere

Climate is on much longer time

scales, and is how we expect the
atmosphere to behave

Long-term weather: it would be
useful to have accurate predictions
for a sub/seasonal timescale
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Background

Hurricane Matthew, 2016:

Over S2 billion damage
Ended up hitting Florida
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Not Just

EMC's GEFS plumes for: KDEN
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Forecast Skill

Anomaly correlation (%) of ECMWF 500hPa height forecasts
Northern hemisphere ——  Southern hemisphere
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Mapping Uncertainty

time

omemaeme,,

D

b

Credit: The Royal Society Publishing




Double Pendulum and
Chaos
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Why do we care about heat events?

Average temperature
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June 2018 Average Temperature, Credit: NOAA.gov




Why do we care about heat events?
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Why do we care about heat events?
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Why do we care about heat events?

Projected Extreme Temperature Mortality in Select Cities
Due to Unmitigated Climate Change
Estimated net mortality rate from extremely hot and cold days (number of deaths per 100,000 residents)
under the Reference scenario for 49 cities in 2050 and 2100. Red circles indicate cities included
in the analysis; cities without circles should not be interpreted as having no extreme temperature impact.
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From Correlation to Statistical Value
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From Correlation to Statistical Value
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From Correlation to Statistical Value
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From Correlation to Statistical Value
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Input and Output
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Why Neural Networks?

Credit: Fast.ai




Dense Net

Universal Function
Approximators

Can really (over)learn
anything with enough

layers and neurons

Credit: Wikipedia

A\'A

A
\LY @\ X\ @\ [y
Mt

::‘y,:: 1st hidden 2nd hidden Output
(784) layer (200) layer (200) layer (10)

Fully connected neural network example architecture

Credit: Adventures in Machine Learning




Confusion matrix for Best Model

Dewv ROC Confusion Matrix

True labels

Predicted labels




True labels

Confusion matrix for Best Model

Dewv ROC Confusion Matrix

Predicted labels
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Create images of
SST in Pacific

Methods Overview




Methods Overview

LSTM

! E

Convolutional Pooling

Create images of
SST in Pacific

Dense

Train Neural Network on images on
GPU




Methods Overview

LSTM

! Flatten
Train Neural Network on images on
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Why Use a GPU?

Due to differences in architecture, GPUs trained the Networks faster with

more accuracy than the CPUs.

Average ROC score Seconds/Epoch
2.6-GHz Intel
XeonE5-2670 CPU 0.44 °.48
NVIDIA K80 GPU 0.55 0.89
Average Increase 11% 615%




Basic steps in deep learning

e Forward propagation
O Pass input values forward through the network

—‘m—

Input 'W ™ Output




Basic steps in deep learning

e Forward propagation

o Pass input values forward through the network
e Backward propagation

O Adjust weights between neurons

O minimize loss function

A weight A weight

Input 'W ™ Output




Basic steps in deep learning

e Forward propagation
O Pass input values forward through the network
e Backward propagation
O Adjust weights between neurons
O minimize loss function
e Hyperparameter optimization
O Change values such as learning rate and
momentum (used in Backward propagation)

validation accuracy

O Can help minimize the loss function
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Loss Function
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Loss Function
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Convolutional network

Pooling Flatten

Convolutional

Dense
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Image recognition

Video Analysis

Training Al agents to play games

Facial recgnition




Convolution




Image Recognition Example

https://www.engadget.com/2014/09/08/google-details-object-recognition-tech/




Long Short Term Memory (LSTM) Network

LSTM

Convolutional Pooling
' -
A = : Dense

~———> & —— m — Output

e Time series prediction e Grammar learning
e Speech recognition e Handwriting recognition
e Rhythm learning e Human action recognition

e Music composition



https://en.wikipedia.org/wiki/Time_series_prediction
https://en.wikipedia.org/wiki/Handwriting_recognition

LSTM layer




LSTM layer
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LSTM layers can manage long-term dependencies.




LSTM layer

At g At+1 " At+2

LSTM layers can manage long-term dependencies.




LSTM example: Image Captioning

| think it's a snow covered mountain.

'.a .S B

- >

https://www.captionbot.ai/




LSTM example: Image Captioning

| think it's a snow covered mountain.

-~ > o __og

| think it's a man wearing a hat and sunglasses talking on a cell phone.
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https://www.captionbot.ai/




LSTM example: Image Captioning

| think it's a snow covered mountain.

| think it's a man wearing a hat and sunglasses talking on a cell phone.
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2009 woodland designs

https://www.captionbot.ai/
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True positive
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Conclusions

® GPUs were faster at training both Networks than CPUs

® The LSTM network performed better overall than the LeNet network

e The LSTM network predicts better than random chance but is only
significantly better for the 30 day lead time

Future Work

® Recreate McKinnon’s week long prediction
e Finish optimizing networks for better ROC scores

e Additional architectures
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Questions?

Credit: IBM.com




Data Formatting

e NOAA ESRL High
Resolution SST data

e Used Unidata NetCDF
module in Python

e Makes .ncfiletoa

MFDataset




Pooling

Quick explanation




Development set
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model choice
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lead time
optimizer
class weight
learning rate
epochs
batch size
ROC

LeNet

SGD

view

LSTM

SGD

20
Adam

0.01
156
110

0.682

view

20
Adam

0.005
300
89
0.795

Optimized Hyperparameters

30
Adam

0.01
300
128

0.642

view

30
Adam

0.002
300
189

0.77

40
SGD

0.01
178
164

0.688

view

40
SGD

0.002
300
189

0.7

50

0.01
300
128

0.681

50

0.01
300
45
0.661




