
WRF Scaling and Performance Assessment
Comparison of Compilers and MPI Libraries on Cheyenne

Akira Kyle1, Davide Del Vento 2, Brian Vanderwende 2, Negin Sobhani 2,
Dixit Patel 3

August 2, 2018
1

2

3



Outline

• Background
• WRF
• Cheyenne
• Benchmark Cases

• Compilers
• Message Passing Interface Libraries
• Run Time Scaling
• Computation Time Scaling
• MVAPICH scaling

1



Background



The Weather Research and Forecast Model

• The Weather Research and Forecast (WRF) model is a
parallel mesoscale numerical weather forecasting application
used in both operational and research environments.

• WRF is among the more commonly run codes by atmospheric
scientists on NCAR’s Cheyenne supercomputer.

• Thus it is very important for WRF’s users to know how to
obtain the best performance of WRF on Cheyenne, especially
as users scale their runs to larger core counts.

2



The Weather Research and Forecast Model

• The Weather Research and Forecast (WRF) model is a
parallel mesoscale numerical weather forecasting application
used in both operational and research environments.

• WRF is among the more commonly run codes by atmospheric
scientists on NCAR’s Cheyenne supercomputer.

• Thus it is very important for WRF’s users to know how to
obtain the best performance of WRF on Cheyenne, especially
as users scale their runs to larger core counts.

2



The Weather Research and Forecast Model

• The Weather Research and Forecast (WRF) model is a
parallel mesoscale numerical weather forecasting application
used in both operational and research environments.

• WRF is among the more commonly run codes by atmospheric
scientists on NCAR’s Cheyenne supercomputer.

• Thus it is very important for WRF’s users to know how to
obtain the best performance of WRF on Cheyenne, especially
as users scale their runs to larger core counts.

2



WRF System Flowchart

3



Cheyenne

• 4,032 computation nodes

• Dual-socket nodes, 18 cores per socket

• 145,152 total processor cores

• 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors

• 16 flops per clock

• 5.34 peak petaflops
• 313 TB total system memory

• 64 GB/node on 3,168 nodes, DDR4-2400
• 128 GB/node on 864 nodes, DDR4-2400

• Mellanox EDR InfiniBand high-speed interconnect

• Partial 9D Enhanced Hypercube single-plane interconnect
topology

• Bandwidth: 25 GBps bidirectional per link
• Latency: MPI ping-pong < 1 µs; hardware link 130 ns

4



Cheyenne

• 4,032 computation nodes
• Dual-socket nodes, 18 cores per socket

• 145,152 total processor cores
• 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors

• 16 flops per clock

• 5.34 peak petaflops
• 313 TB total system memory

• 64 GB/node on 3,168 nodes, DDR4-2400
• 128 GB/node on 864 nodes, DDR4-2400

• Mellanox EDR InfiniBand high-speed interconnect

• Partial 9D Enhanced Hypercube single-plane interconnect
topology

• Bandwidth: 25 GBps bidirectional per link
• Latency: MPI ping-pong < 1 µs; hardware link 130 ns

4



Cheyenne

• 4,032 computation nodes
• Dual-socket nodes, 18 cores per socket

• 145,152 total processor cores

• 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors

• 16 flops per clock

• 5.34 peak petaflops
• 313 TB total system memory

• 64 GB/node on 3,168 nodes, DDR4-2400
• 128 GB/node on 864 nodes, DDR4-2400

• Mellanox EDR InfiniBand high-speed interconnect

• Partial 9D Enhanced Hypercube single-plane interconnect
topology

• Bandwidth: 25 GBps bidirectional per link
• Latency: MPI ping-pong < 1 µs; hardware link 130 ns

4



Cheyenne

• 4,032 computation nodes
• Dual-socket nodes, 18 cores per socket

• 145,152 total processor cores
• 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors

• 16 flops per clock
• 5.34 peak petaflops

• 313 TB total system memory

• 64 GB/node on 3,168 nodes, DDR4-2400
• 128 GB/node on 864 nodes, DDR4-2400

• Mellanox EDR InfiniBand high-speed interconnect

• Partial 9D Enhanced Hypercube single-plane interconnect
topology

• Bandwidth: 25 GBps bidirectional per link
• Latency: MPI ping-pong < 1 µs; hardware link 130 ns

4



Cheyenne

• 4,032 computation nodes
• Dual-socket nodes, 18 cores per socket

• 145,152 total processor cores
• 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors

• 16 flops per clock

• 5.34 peak petaflops
• 313 TB total system memory

• 64 GB/node on 3,168 nodes, DDR4-2400
• 128 GB/node on 864 nodes, DDR4-2400

• Mellanox EDR InfiniBand high-speed interconnect

• Partial 9D Enhanced Hypercube single-plane interconnect
topology

• Bandwidth: 25 GBps bidirectional per link
• Latency: MPI ping-pong < 1 µs; hardware link 130 ns

4



Cheyenne

• 4,032 computation nodes
• Dual-socket nodes, 18 cores per socket

• 145,152 total processor cores
• 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors

• 16 flops per clock
• 5.34 peak petaflops

• 313 TB total system memory

• 64 GB/node on 3,168 nodes, DDR4-2400
• 128 GB/node on 864 nodes, DDR4-2400

• Mellanox EDR InfiniBand high-speed interconnect

• Partial 9D Enhanced Hypercube single-plane interconnect
topology

• Bandwidth: 25 GBps bidirectional per link
• Latency: MPI ping-pong < 1 µs; hardware link 130 ns

4



Cheyenne

• 4,032 computation nodes
• Dual-socket nodes, 18 cores per socket

• 145,152 total processor cores
• 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors

• 16 flops per clock
• 5.34 peak petaflops

• 313 TB total system memory

• 64 GB/node on 3,168 nodes, DDR4-2400
• 128 GB/node on 864 nodes, DDR4-2400

• Mellanox EDR InfiniBand high-speed interconnect

• Partial 9D Enhanced Hypercube single-plane interconnect
topology

• Bandwidth: 25 GBps bidirectional per link
• Latency: MPI ping-pong < 1 µs; hardware link 130 ns

4



Cheyenne

• 4,032 computation nodes
• Dual-socket nodes, 18 cores per socket

• 145,152 total processor cores
• 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors

• 16 flops per clock
• 5.34 peak petaflops

• 313 TB total system memory
• 64 GB/node on 3,168 nodes, DDR4-2400

• 128 GB/node on 864 nodes, DDR4-2400
• Mellanox EDR InfiniBand high-speed interconnect

• Partial 9D Enhanced Hypercube single-plane interconnect
topology

• Bandwidth: 25 GBps bidirectional per link
• Latency: MPI ping-pong < 1 µs; hardware link 130 ns

4



Cheyenne

• 4,032 computation nodes
• Dual-socket nodes, 18 cores per socket

• 145,152 total processor cores
• 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors

• 16 flops per clock
• 5.34 peak petaflops

• 313 TB total system memory
• 64 GB/node on 3,168 nodes, DDR4-2400
• 128 GB/node on 864 nodes, DDR4-2400

• Mellanox EDR InfiniBand high-speed interconnect

• Partial 9D Enhanced Hypercube single-plane interconnect
topology

• Bandwidth: 25 GBps bidirectional per link
• Latency: MPI ping-pong < 1 µs; hardware link 130 ns

4



Cheyenne

• 4,032 computation nodes
• Dual-socket nodes, 18 cores per socket

• 145,152 total processor cores
• 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors

• 16 flops per clock
• 5.34 peak petaflops

• 313 TB total system memory
• 64 GB/node on 3,168 nodes, DDR4-2400
• 128 GB/node on 864 nodes, DDR4-2400

• Mellanox EDR InfiniBand high-speed interconnect

• Partial 9D Enhanced Hypercube single-plane interconnect
topology

• Bandwidth: 25 GBps bidirectional per link
• Latency: MPI ping-pong < 1 µs; hardware link 130 ns

4



Cheyenne

• 4,032 computation nodes
• Dual-socket nodes, 18 cores per socket

• 145,152 total processor cores
• 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors

• 16 flops per clock
• 5.34 peak petaflops

• 313 TB total system memory
• 64 GB/node on 3,168 nodes, DDR4-2400
• 128 GB/node on 864 nodes, DDR4-2400

• Mellanox EDR InfiniBand high-speed interconnect
• Partial 9D Enhanced Hypercube single-plane interconnect

topology

• Bandwidth: 25 GBps bidirectional per link
• Latency: MPI ping-pong < 1 µs; hardware link 130 ns

4



Cheyenne

• 4,032 computation nodes
• Dual-socket nodes, 18 cores per socket

• 145,152 total processor cores
• 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors

• 16 flops per clock
• 5.34 peak petaflops

• 313 TB total system memory
• 64 GB/node on 3,168 nodes, DDR4-2400
• 128 GB/node on 864 nodes, DDR4-2400

• Mellanox EDR InfiniBand high-speed interconnect
• Partial 9D Enhanced Hypercube single-plane interconnect

topology
• Bandwidth: 25 GBps bidirectional per link

• Latency: MPI ping-pong < 1 µs; hardware link 130 ns

4



Cheyenne

• 4,032 computation nodes
• Dual-socket nodes, 18 cores per socket

• 145,152 total processor cores
• 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors

• 16 flops per clock
• 5.34 peak petaflops

• 313 TB total system memory
• 64 GB/node on 3,168 nodes, DDR4-2400
• 128 GB/node on 864 nodes, DDR4-2400

• Mellanox EDR InfiniBand high-speed interconnect
• Partial 9D Enhanced Hypercube single-plane interconnect

topology
• Bandwidth: 25 GBps bidirectional per link
• Latency: MPI ping-pong < 1 µs; hardware link 130 ns

4



Benchmark cases

• Official CONUS (Contiguous United States) benchmarks for
WRF only ran on WRF versions 3.8.1 or prior.

• Wanted to benchmark most recent version of WRF (4.0), so
we had to update the old CONUS benchmarks.

• Also created several new benchmark cases.

• Benchmark cases cover commonly used physics
parameterizations.

• CONUS benchmarks use the CONUS physics suite.

• But 2.5 km resolution case disables cu_physics.

• Hurricane Maria benchmarks use the TROPICAL physics suite

• But cu_physics disabled and sf_sfclay_physics = 1 for
both resolutions.

5



Benchmark cases

• Official CONUS (Contiguous United States) benchmarks for
WRF only ran on WRF versions 3.8.1 or prior.

• Wanted to benchmark most recent version of WRF (4.0), so
we had to update the old CONUS benchmarks.

• Also created several new benchmark cases.
• Benchmark cases cover commonly used physics

parameterizations.

• CONUS benchmarks use the CONUS physics suite.

• But 2.5 km resolution case disables cu_physics.

• Hurricane Maria benchmarks use the TROPICAL physics suite

• But cu_physics disabled and sf_sfclay_physics = 1 for
both resolutions.

5



Benchmark cases

• Official CONUS (Contiguous United States) benchmarks for
WRF only ran on WRF versions 3.8.1 or prior.

• Wanted to benchmark most recent version of WRF (4.0), so
we had to update the old CONUS benchmarks.

• Also created several new benchmark cases.

• Benchmark cases cover commonly used physics
parameterizations.

• CONUS benchmarks use the CONUS physics suite.

• But 2.5 km resolution case disables cu_physics.

• Hurricane Maria benchmarks use the TROPICAL physics suite

• But cu_physics disabled and sf_sfclay_physics = 1 for
both resolutions.

5



Benchmark cases

• Official CONUS (Contiguous United States) benchmarks for
WRF only ran on WRF versions 3.8.1 or prior.

• Wanted to benchmark most recent version of WRF (4.0), so
we had to update the old CONUS benchmarks.

• Also created several new benchmark cases.
• Benchmark cases cover commonly used physics

parameterizations.

• CONUS benchmarks use the CONUS physics suite.

• But 2.5 km resolution case disables cu_physics.

• Hurricane Maria benchmarks use the TROPICAL physics suite

• But cu_physics disabled and sf_sfclay_physics = 1 for
both resolutions.

5



Benchmark cases

• Official CONUS (Contiguous United States) benchmarks for
WRF only ran on WRF versions 3.8.1 or prior.

• Wanted to benchmark most recent version of WRF (4.0), so
we had to update the old CONUS benchmarks.

• Also created several new benchmark cases.
• Benchmark cases cover commonly used physics

parameterizations.
• CONUS benchmarks use the CONUS physics suite.

• But 2.5 km resolution case disables cu_physics.
• Hurricane Maria benchmarks use the TROPICAL physics suite

• But cu_physics disabled and sf_sfclay_physics = 1 for
both resolutions.

5



Benchmark cases

• Official CONUS (Contiguous United States) benchmarks for
WRF only ran on WRF versions 3.8.1 or prior.

• Wanted to benchmark most recent version of WRF (4.0), so
we had to update the old CONUS benchmarks.

• Also created several new benchmark cases.
• Benchmark cases cover commonly used physics

parameterizations.
• CONUS benchmarks use the CONUS physics suite.

• But 2.5 km resolution case disables cu_physics.

• Hurricane Maria benchmarks use the TROPICAL physics suite

• But cu_physics disabled and sf_sfclay_physics = 1 for
both resolutions.

5



Benchmark cases

• Official CONUS (Contiguous United States) benchmarks for
WRF only ran on WRF versions 3.8.1 or prior.

• Wanted to benchmark most recent version of WRF (4.0), so
we had to update the old CONUS benchmarks.

• Also created several new benchmark cases.
• Benchmark cases cover commonly used physics

parameterizations.
• CONUS benchmarks use the CONUS physics suite.

• But 2.5 km resolution case disables cu_physics.
• Hurricane Maria benchmarks use the TROPICAL physics suite

• But cu_physics disabled and sf_sfclay_physics = 1 for
both resolutions.

5



Benchmark cases

• Official CONUS (Contiguous United States) benchmarks for
WRF only ran on WRF versions 3.8.1 or prior.

• Wanted to benchmark most recent version of WRF (4.0), so
we had to update the old CONUS benchmarks.

• Also created several new benchmark cases.
• Benchmark cases cover commonly used physics

parameterizations.
• CONUS benchmarks use the CONUS physics suite.

• But 2.5 km resolution case disables cu_physics.
• Hurricane Maria benchmarks use the TROPICAL physics suite

• But cu_physics disabled and sf_sfclay_physics = 1 for
both resolutions.

5



Summary of Benchmark Cases

Region Resoultion Horizontal Vertical Total Time Run
Gridpoints Gridpoints Gridpoints Step Time

CONUS 12 km 425 300 127,500 72 secs 6 hrs
CONUS 2.5 km 1901 1301 2,473,201 15 secs 6 hrs
Maria 3 km 1396 1384 1,932,064 9 secs 3 hrs
Maria 1 km 3665 2894 10,606,510 3 secs 1 hrs

6



Compilers



Compiler Options

• GNU Compiler Collection (GCC) versions 6.3.0, 8.1.0

• WRF compiles with -O2 by default
• -O3 : enables all -O2 optimization along with optimizations

such as function inlining and loop vectorization and more
aggressive loop unrolling

• -Ofast : enables all -O3 optimizations along with disregarding
strict standards compliance (such is for floating point
operations)

• -mfma : enables Fused Multiply-Add instruction set
• -march=native : enables target instruction set to be

everything supported by the compiling machine
• Intel Compiler versions 17.0.1, 18.0.1 (Default compiler for

Cheyenne)

• WRF compiles with -O3 by default
• -Xhost : similar to GNU’s -march=native
• -fp-model fast=2 : similar to GNU’s -Ofast optimization

7



Compiler Options

• GNU Compiler Collection (GCC) versions 6.3.0, 8.1.0
• WRF compiles with -O2 by default

• -O3 : enables all -O2 optimization along with optimizations
such as function inlining and loop vectorization and more
aggressive loop unrolling

• -Ofast : enables all -O3 optimizations along with disregarding
strict standards compliance (such is for floating point
operations)

• -mfma : enables Fused Multiply-Add instruction set
• -march=native : enables target instruction set to be

everything supported by the compiling machine
• Intel Compiler versions 17.0.1, 18.0.1 (Default compiler for

Cheyenne)

• WRF compiles with -O3 by default
• -Xhost : similar to GNU’s -march=native
• -fp-model fast=2 : similar to GNU’s -Ofast optimization

7



Compiler Options

• GNU Compiler Collection (GCC) versions 6.3.0, 8.1.0
• WRF compiles with -O2 by default
• -O3 : enables all -O2 optimization along with optimizations

such as function inlining and loop vectorization and more
aggressive loop unrolling

• -Ofast : enables all -O3 optimizations along with disregarding
strict standards compliance (such is for floating point
operations)

• -mfma : enables Fused Multiply-Add instruction set
• -march=native : enables target instruction set to be

everything supported by the compiling machine
• Intel Compiler versions 17.0.1, 18.0.1 (Default compiler for

Cheyenne)

• WRF compiles with -O3 by default
• -Xhost : similar to GNU’s -march=native
• -fp-model fast=2 : similar to GNU’s -Ofast optimization

7



Compiler Options

• GNU Compiler Collection (GCC) versions 6.3.0, 8.1.0
• WRF compiles with -O2 by default
• -O3 : enables all -O2 optimization along with optimizations

such as function inlining and loop vectorization and more
aggressive loop unrolling

• -Ofast : enables all -O3 optimizations along with disregarding
strict standards compliance (such is for floating point
operations)

• -mfma : enables Fused Multiply-Add instruction set
• -march=native : enables target instruction set to be

everything supported by the compiling machine
• Intel Compiler versions 17.0.1, 18.0.1 (Default compiler for

Cheyenne)

• WRF compiles with -O3 by default
• -Xhost : similar to GNU’s -march=native
• -fp-model fast=2 : similar to GNU’s -Ofast optimization

7



Compiler Options

• GNU Compiler Collection (GCC) versions 6.3.0, 8.1.0
• WRF compiles with -O2 by default
• -O3 : enables all -O2 optimization along with optimizations

such as function inlining and loop vectorization and more
aggressive loop unrolling

• -Ofast : enables all -O3 optimizations along with disregarding
strict standards compliance (such is for floating point
operations)

• -mfma : enables Fused Multiply-Add instruction set

• -march=native : enables target instruction set to be
everything supported by the compiling machine

• Intel Compiler versions 17.0.1, 18.0.1 (Default compiler for
Cheyenne)

• WRF compiles with -O3 by default
• -Xhost : similar to GNU’s -march=native
• -fp-model fast=2 : similar to GNU’s -Ofast optimization

7



Compiler Options

• GNU Compiler Collection (GCC) versions 6.3.0, 8.1.0
• WRF compiles with -O2 by default
• -O3 : enables all -O2 optimization along with optimizations

such as function inlining and loop vectorization and more
aggressive loop unrolling

• -Ofast : enables all -O3 optimizations along with disregarding
strict standards compliance (such is for floating point
operations)

• -mfma : enables Fused Multiply-Add instruction set
• -march=native : enables target instruction set to be

everything supported by the compiling machine

• Intel Compiler versions 17.0.1, 18.0.1 (Default compiler for
Cheyenne)

• WRF compiles with -O3 by default
• -Xhost : similar to GNU’s -march=native
• -fp-model fast=2 : similar to GNU’s -Ofast optimization

7



Compiler Options

• GNU Compiler Collection (GCC) versions 6.3.0, 8.1.0
• WRF compiles with -O2 by default
• -O3 : enables all -O2 optimization along with optimizations

such as function inlining and loop vectorization and more
aggressive loop unrolling

• -Ofast : enables all -O3 optimizations along with disregarding
strict standards compliance (such is for floating point
operations)

• -mfma : enables Fused Multiply-Add instruction set
• -march=native : enables target instruction set to be

everything supported by the compiling machine
• Intel Compiler versions 17.0.1, 18.0.1 (Default compiler for

Cheyenne)

• WRF compiles with -O3 by default
• -Xhost : similar to GNU’s -march=native
• -fp-model fast=2 : similar to GNU’s -Ofast optimization

7



Compiler Options

• GNU Compiler Collection (GCC) versions 6.3.0, 8.1.0
• WRF compiles with -O2 by default
• -O3 : enables all -O2 optimization along with optimizations

such as function inlining and loop vectorization and more
aggressive loop unrolling

• -Ofast : enables all -O3 optimizations along with disregarding
strict standards compliance (such is for floating point
operations)

• -mfma : enables Fused Multiply-Add instruction set
• -march=native : enables target instruction set to be

everything supported by the compiling machine
• Intel Compiler versions 17.0.1, 18.0.1 (Default compiler for

Cheyenne)
• WRF compiles with -O3 by default

• -Xhost : similar to GNU’s -march=native
• -fp-model fast=2 : similar to GNU’s -Ofast optimization

7



Compiler Options

• GNU Compiler Collection (GCC) versions 6.3.0, 8.1.0
• WRF compiles with -O2 by default
• -O3 : enables all -O2 optimization along with optimizations

such as function inlining and loop vectorization and more
aggressive loop unrolling

• -Ofast : enables all -O3 optimizations along with disregarding
strict standards compliance (such is for floating point
operations)

• -mfma : enables Fused Multiply-Add instruction set
• -march=native : enables target instruction set to be

everything supported by the compiling machine
• Intel Compiler versions 17.0.1, 18.0.1 (Default compiler for

Cheyenne)
• WRF compiles with -O3 by default
• -Xhost : similar to GNU’s -march=native

• -fp-model fast=2 : similar to GNU’s -Ofast optimization

7



Compiler Options

• GNU Compiler Collection (GCC) versions 6.3.0, 8.1.0
• WRF compiles with -O2 by default
• -O3 : enables all -O2 optimization along with optimizations

such as function inlining and loop vectorization and more
aggressive loop unrolling

• -Ofast : enables all -O3 optimizations along with disregarding
strict standards compliance (such is for floating point
operations)

• -mfma : enables Fused Multiply-Add instruction set
• -march=native : enables target instruction set to be

everything supported by the compiling machine
• Intel Compiler versions 17.0.1, 18.0.1 (Default compiler for

Cheyenne)
• WRF compiles with -O3 by default
• -Xhost : similar to GNU’s -march=native
• -fp-model fast=2 : similar to GNU’s -Ofast optimization 7



Compiler Performance Results

Fig. 1: Comparison of Intel 18.0.1 and Gnu 8.1.0 compilers with various
compilation flags normalized to default Intel WRF compilation

Runs made using CONUS 12 km Benchmark Case on 2 Nodes 8



Compiler Performance Results

Intel compiler is consistently 25-30% faster than the Gnu compiler
across all flags tried.

9



Compiler Performance Results

We also see that for both Intel and Gnu, the -Ofast (for Gnu)
or -fp-model fast=2 (for Intel) are the only flags that make a
significant difference in speed. 9



Compiler Performance Results

Other flags tried such as -mfma or -march=native -Xhost made
little to no difference in WRF’s speed.

9



Compiler Performance Results

WRF has compilation option (66) which enables -fp-model
fast=2 and -Xhost and a few other flags.

9



Message Passing Interface Libraries



MPIs Tested on Cheyenne

• SGI’s MPT version 2.18 (v2.15 is default MPI on Cheyenne)

• Ohio State University’s MVAPICH version 2.2
• OpenMPI version 3.1.0
• Intel MPI version 2018.1.163
• MPICH version 3.2

10



MPIs Tested on Cheyenne

• SGI’s MPT version 2.18 (v2.15 is default MPI on Cheyenne)
• Ohio State University’s MVAPICH version 2.2

• OpenMPI version 3.1.0
• Intel MPI version 2018.1.163
• MPICH version 3.2

10



MPIs Tested on Cheyenne

• SGI’s MPT version 2.18 (v2.15 is default MPI on Cheyenne)
• Ohio State University’s MVAPICH version 2.2
• OpenMPI version 3.1.0

• Intel MPI version 2018.1.163
• MPICH version 3.2

10



MPIs Tested on Cheyenne

• SGI’s MPT version 2.18 (v2.15 is default MPI on Cheyenne)
• Ohio State University’s MVAPICH version 2.2
• OpenMPI version 3.1.0
• Intel MPI version 2018.1.163

• MPICH version 3.2

10



MPIs Tested on Cheyenne

• SGI’s MPT version 2.18 (v2.15 is default MPI on Cheyenne)
• Ohio State University’s MVAPICH version 2.2
• OpenMPI version 3.1.0
• Intel MPI version 2018.1.163
• MPICH version 3.2

10



MPI Comparison Results

Fig. 2: MPI comparison using
Gnu 8.1.0

Fig. 3: MPI comparison using
Intel 18.0.1

Runs made using CONUS 12 km Benchmark Case 11



MPI Comparison Results

• MPT, MVAPICH and OpenMPI all have similar performance.

• MPICH has overall poor performance and the performance.
• Intel MPI does not scale well to large node counts.

12



MPI Comparison Results

• MPT, MVAPICH and OpenMPI all have similar performance.
• MPICH has overall poor performance and the performance.

• Intel MPI does not scale well to large node counts.

12



MPI Comparison Results

• MPT, MVAPICH and OpenMPI all have similar performance.
• MPICH has overall poor performance and the performance.
• Intel MPI does not scale well to large node counts. 12



Total Run Time Scaling



Run Time Scaling Comparison

Fig. 4: WRF V3.3 Run Time Scaling
on Yellowstone

Fig. 5: WRF V4.0 Run Time Scaling
on Cheyenne

Runs made using Hurricane Maria 1 km Benchmark case.
13



Run Time Scaling Comparison

On Yellowstone (Fig 4), the initialization time scaled much poorer
at large node counts, eventually leading to unfeasibly long jobs.

14



Run Time Scaling Comparison

On Cheyenne (Fig 5), the initialization and writing output times
remain relatively fixed, only increasing slightly as you move to larger
core counts.

14



Run Time Scaling Comparison

This improvement in the scaling of the initialization time is likely due
to improvements made in the MPI collectives in WRF’s initialization and
writing output code along with improvements to the MPI used on Cheyenne
versus Yellowstone. 14



Computation Time Scaling



Computation Time Scaling Results

Fig. 6: WRF V3.3 Computation
Scaling on Yellowstone

Fig. 7: WRF V4.0 Computation
Scaling on Cheyenne

15



Computation Time Scaling Results

Large number of gridpoints per core region:
• On both Yellowstone (Fig 6) and Cheyenne (Fig 7) WRF experiences linear

strong scaling
• Increasing number of cores will proportionately decrease computation time

while the same number of total core-hours will be used for computation
16



Computation Time Scaling Results

Small number of gridpoints per core region:
• On Yellowstone (Fig 6), WRF departs from linear strong scaling

• Runs in this region would use more core-hours to run the same
simulation than if they had been run on fewer cores

• MPI communication dominates the actual time spent in computation
16



Computation Time Scaling Results

Small number of gridpoints per core region:
• On Cheyenne (Fig 7), WRF doesn’t significantly depart from linear strong

scaling
• Likely due to improvements in WRF’s MPI code along and a better

network interconnect on Cheyenne than Yellowstone 16



Computation Time Scaling Results

Starting with V4.0, WRF refuses to run with a minimum patch size of less than
10 grid points in either direction

• Prevents users from running with fewer than 100 gridpoints per core where
WRF computation would be very MPI bound

16



Computation Time Scaling Results

Cheyenne has ~1.78 GB of memory/core which is ~12% less than Yellowstone
• Runs with too many gridpoints/node will run out of memory and be killed
• Typically the max gridpoints/node that will fit into memory the is between

105 and 106 total gridpoints but it depends on the physics
parameterizations

16



Computation Time Scaling Results

Runs in the very large gridpoints per core region on Cheyenne (Fig 7) used the
128 GB memory nodes and/or undersubscribed the cores on each node

• This causes the small bump in speed observed starting around 105

gridpoints/core
• Undersubscribing cores is an inefficient use of a user’s core-hour allocation

16



MVAPICH Scaling



MVAPICH Runtime Options

• Interested in MVAPICH as a potential default MPI for the
next NCAR supercomputing system

• MVAPICH developed for InfiniBand networks
• Tried setting some runtime environment variables:

• BIND

• MV2_CPU_BINDING_POLICY=hybrid
• MV2_HYBRID_BINDING_POLICY=bunch

• HW

• MV2_USE_MCAST=1
• MV2_ENABLE_SHARP=1

17



MVAPICH Runtime Options

• Interested in MVAPICH as a potential default MPI for the
next NCAR supercomputing system

• MVAPICH developed for InfiniBand networks

• Tried setting some runtime environment variables:

• BIND

• MV2_CPU_BINDING_POLICY=hybrid
• MV2_HYBRID_BINDING_POLICY=bunch

• HW

• MV2_USE_MCAST=1
• MV2_ENABLE_SHARP=1

17



MVAPICH Runtime Options

• Interested in MVAPICH as a potential default MPI for the
next NCAR supercomputing system

• MVAPICH developed for InfiniBand networks
• Tried setting some runtime environment variables:

• BIND

• MV2_CPU_BINDING_POLICY=hybrid
• MV2_HYBRID_BINDING_POLICY=bunch

• HW

• MV2_USE_MCAST=1
• MV2_ENABLE_SHARP=1

17



MVAPICH Runtime Options

• Interested in MVAPICH as a potential default MPI for the
next NCAR supercomputing system

• MVAPICH developed for InfiniBand networks
• Tried setting some runtime environment variables:

• BIND

• MV2_CPU_BINDING_POLICY=hybrid
• MV2_HYBRID_BINDING_POLICY=bunch

• HW

• MV2_USE_MCAST=1
• MV2_ENABLE_SHARP=1

17



MVAPICH Runtime Options

• Interested in MVAPICH as a potential default MPI for the
next NCAR supercomputing system

• MVAPICH developed for InfiniBand networks
• Tried setting some runtime environment variables:

• BIND
• MV2_CPU_BINDING_POLICY=hybrid

• MV2_HYBRID_BINDING_POLICY=bunch

• HW

• MV2_USE_MCAST=1
• MV2_ENABLE_SHARP=1

17



MVAPICH Runtime Options

• Interested in MVAPICH as a potential default MPI for the
next NCAR supercomputing system

• MVAPICH developed for InfiniBand networks
• Tried setting some runtime environment variables:

• BIND
• MV2_CPU_BINDING_POLICY=hybrid
• MV2_HYBRID_BINDING_POLICY=bunch

• HW

• MV2_USE_MCAST=1
• MV2_ENABLE_SHARP=1

17



MVAPICH Runtime Options

• Interested in MVAPICH as a potential default MPI for the
next NCAR supercomputing system

• MVAPICH developed for InfiniBand networks
• Tried setting some runtime environment variables:

• BIND
• MV2_CPU_BINDING_POLICY=hybrid
• MV2_HYBRID_BINDING_POLICY=bunch

• HW

• MV2_USE_MCAST=1
• MV2_ENABLE_SHARP=1

17



MVAPICH Runtime Options

• Interested in MVAPICH as a potential default MPI for the
next NCAR supercomputing system

• MVAPICH developed for InfiniBand networks
• Tried setting some runtime environment variables:

• BIND
• MV2_CPU_BINDING_POLICY=hybrid
• MV2_HYBRID_BINDING_POLICY=bunch

• HW
• MV2_USE_MCAST=1

• MV2_ENABLE_SHARP=1

17



MVAPICH Runtime Options

• Interested in MVAPICH as a potential default MPI for the
next NCAR supercomputing system

• MVAPICH developed for InfiniBand networks
• Tried setting some runtime environment variables:

• BIND
• MV2_CPU_BINDING_POLICY=hybrid
• MV2_HYBRID_BINDING_POLICY=bunch

• HW
• MV2_USE_MCAST=1
• MV2_ENABLE_SHARP=1

17



MVAPICH Scaling Results

Fig. 8: MVAPICH CONUS 12 km Init and Write Scaling
18



MVAPICH Scaling Results

Fig. 9: MVAPICH Maria 3km Init and Write Scaling
19



Conclusion



Summary

• Intel compiler consistently faster than Gnu compiler

• Users should use -fp-model fast=2 or -Ofast for a modest
performance increase

• MPT, OpenMPI, and MVAPICH show similar performance
while Intel MPI and MPICH have poorer performance

• WRF’s initialization and writing time show improvements
compared to previous results on Yellowstone with a previous
WRF version due to better MPI collectives.

• WRF V4.0 scales well across entire run-able region

• Will run out of memory on runs with too many of gridpoints
per core

• WRF will prevent runs with too few of gridpoints per core

20



Summary

• Intel compiler consistently faster than Gnu compiler
• Users should use -fp-model fast=2 or -Ofast for a modest

performance increase

• MPT, OpenMPI, and MVAPICH show similar performance
while Intel MPI and MPICH have poorer performance

• WRF’s initialization and writing time show improvements
compared to previous results on Yellowstone with a previous
WRF version due to better MPI collectives.

• WRF V4.0 scales well across entire run-able region

• Will run out of memory on runs with too many of gridpoints
per core

• WRF will prevent runs with too few of gridpoints per core

20



Summary

• Intel compiler consistently faster than Gnu compiler
• Users should use -fp-model fast=2 or -Ofast for a modest

performance increase

• MPT, OpenMPI, and MVAPICH show similar performance
while Intel MPI and MPICH have poorer performance

• WRF’s initialization and writing time show improvements
compared to previous results on Yellowstone with a previous
WRF version due to better MPI collectives.

• WRF V4.0 scales well across entire run-able region

• Will run out of memory on runs with too many of gridpoints
per core

• WRF will prevent runs with too few of gridpoints per core

20



Summary

• Intel compiler consistently faster than Gnu compiler
• Users should use -fp-model fast=2 or -Ofast for a modest

performance increase

• MPT, OpenMPI, and MVAPICH show similar performance
while Intel MPI and MPICH have poorer performance

• WRF’s initialization and writing time show improvements
compared to previous results on Yellowstone with a previous
WRF version due to better MPI collectives.

• WRF V4.0 scales well across entire run-able region

• Will run out of memory on runs with too many of gridpoints
per core

• WRF will prevent runs with too few of gridpoints per core

20



Summary

• Intel compiler consistently faster than Gnu compiler
• Users should use -fp-model fast=2 or -Ofast for a modest

performance increase

• MPT, OpenMPI, and MVAPICH show similar performance
while Intel MPI and MPICH have poorer performance

• WRF’s initialization and writing time show improvements
compared to previous results on Yellowstone with a previous
WRF version due to better MPI collectives.

• WRF V4.0 scales well across entire run-able region

• Will run out of memory on runs with too many of gridpoints
per core

• WRF will prevent runs with too few of gridpoints per core

20



Summary

• Intel compiler consistently faster than Gnu compiler
• Users should use -fp-model fast=2 or -Ofast for a modest

performance increase

• MPT, OpenMPI, and MVAPICH show similar performance
while Intel MPI and MPICH have poorer performance

• WRF’s initialization and writing time show improvements
compared to previous results on Yellowstone with a previous
WRF version due to better MPI collectives.

• WRF V4.0 scales well across entire run-able region
• Will run out of memory on runs with too many of gridpoints

per core

• WRF will prevent runs with too few of gridpoints per core

20



Summary

• Intel compiler consistently faster than Gnu compiler
• Users should use -fp-model fast=2 or -Ofast for a modest

performance increase

• MPT, OpenMPI, and MVAPICH show similar performance
while Intel MPI and MPICH have poorer performance

• WRF’s initialization and writing time show improvements
compared to previous results on Yellowstone with a previous
WRF version due to better MPI collectives.

• WRF V4.0 scales well across entire run-able region
• Will run out of memory on runs with too many of gridpoints

per core
• WRF will prevent runs with too few of gridpoints per core

20



Acknowledgments

• Mentors
• Davide Del Vento
• Brian Vanderwende
• Alessandro Fanfarillo
• Negin Sobhani

• Project Partner
• Dixit Patel

• The SIParCS Program and Admins
• Rich Loft
• AJ Lauer
• Jenna Preston
• Eliott Foust
• Valerie Sloan
• Shilo Hall

21



Project Git Repository

All the results presented here along with the benchmarking scripts,
WRF namelists, analysis code, and more can be found in the git
repository for this project:

https://github.com/akirakyle/WRF_benchmarks

22

https://github.com/akirakyle/WRF_benchmarks

	Background
	Compilers
	Message Passing Interface Libraries
	Total Run Time Scaling
	Computation Time Scaling
	MVAPICH Scaling
	Conclusion

