
      High Performance Computing has proven to be a 
powerful tool for the field of climate research, but its use 
comes with large costs, not only financial but also 
environmental costs. One way to reduce these costs is 
by lowering the energy consumption of HPC systems. 
However, most HPC optimization is focused on 
computation time efficiency, with energy efficiency 
largely being of secondary importance. The goal of this 
project was to develop a methodology for collecting 
reliable power data during execution in order to 
understand how to improve the energy efficiency of HPC 
systems without significantly impacting performance. In 
order to streamline the development of this 
methodology, this project’s scope was limited to 64GB 
nodes on NCAR’s Cheyenne computer. Experiments 
were focused on measuring the effect that CPU clock 
speed has on energy consumption for single nodes. The 
experiments were performed on nodes running three 
common performance benchmarks as well as on idle 
(sleeping) nodes. Data was collected from the node itself 
during execution, and from the power supplies feeding 
the node. Although further exploration is necessary, the 
results of this project suggest that managing CPU 
frequency both during execution and while idle could be 
a viable way to boost energy efficiency and reduce the 
cost of HPC systems without sacrificing performance. 

Abstract

      In the upper chart, the value represented by each 
bar is an average of five separate runs for each job type, 
with blue being the node side data, red being the power 
supply data, both indicated in joules on the left, and the 
green is the execution time indicated in seconds on the 
right. 
      The first notable finding displayed by this chart is the 
agreement between the node readings and the power 
supply readings. There are some discrepancies, 
particularly for the slow runs, but these discrepancies 
are likely do to an error in how the power supply data 
was processed. Even with these discrepancies, the two 
data streams have a correlation coefficient of R=0.8615, 
which is an extremely strong correlation (P < 0.00001), 
so we can be confident in the validity of these results.
      The second finding of note is that the energy use is 
comparable between the rated and slow runs, while the 
execution time is comparable between rated and turbo 
runs. Using this data, we see that on average, the rated 
runs used 45.25% less energy than the turbo runs 
(P<0.00001), with only a 7% (P<0.02) increase in 
execution time. Because of the apparent negative 
impact on performance, it is not possible to conclude 
from these results how downclocking to rated would 
impact costs. 
      In the lower chart we have the data from sleeping 
nodes, with each bar representing the average of two 
runs at each clock speed, the blue being node data and 
red being PSU data, both being indicated in Watts. From 
this data, we see that running idle nodes downclocked 
to slow decreases the average power by 43.5% 
compared to running them at turbo (P<0.00001). 
      Using these cursory results, we can roughly estimate 
that by downclocking idle nodes to slow, 
NCAR-Wyoming’s utility bill could be decreased by tens 
of thousands of dollars annually. 
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Results

      Tests were run using CESM2 benchmark kernels, all 
modified to extend runtime: WACCM_imp_sol_vector, 
CESM2_MG2, and CESM2_CLUBB; as well as running 
sleep. These kernels were chosen because of their ease 
of use, as well as the fact that they are used as 
procurement benchmarks at NCAR as they are very 
representative of the kind of applications being run on 
NCAR systems. 
      For collecting data, there are two easily accessible 
data streams, getting data from the node itself, and 
getting data from the power supplies that feed the node. 
Neither data stream is calibratable, so to be confident in 
the results, data was collected from both and their 
correlation calculated. The node side data collection 
becomes far more complicated for applications running 
on multiple nodes, so we are limited to only single 
nodes. On Cheyenne, nine power supplies feed a group 
of 36 nodes, so in order to isolate our single node job, 
the rest of the nodes in the group need to be empty, and 
the extra power drawn by the other 35 nodes subtracted 
out.
      In the batch script, the execution node name, 
timestamps of the start and end of execution, and the 
node power data is collected. Then, in a separate 
python script, the node data is read from job output, 
PSU data is read from database, then both data streams 
are normalized and averaged, then multiplied by 
execution time to get total energy. Then, total energy for 
both data streams and execution time are written to 
CSV.

Methodology

      There are still a lot of unanswered questions brought 
up in the course of this project, and further research is 
needed to fully answer these questions. Specifically, 
testing on other hardware like large memory nodes, GPU 
nodes, other HCP systems, etc; running actual 
experimental applications and jobs running on more 
than one node; and how I/O changes energy usage are 
all worth investigating. There’s also a few questions 
involving idle nodes, specifically the viability of fulling 
shutting down portions of the system that will be idle for 
long stretches of time.
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