
 High Performance Computing has proven to be a
powerful tool for the field of climate research, but its use
comes with large costs, not only financial but also
environmental costs. One way to reduce these costs is
by lowering the energy consumption of HPC systems.
However, most HPC optimization is focused on
computation time efficiency, with energy efficiency
largely being of secondary importance. The goal of this
project was to develop a methodology for collecting
reliable power data during execution in order to
understand how to improve the energy efficiency of HPC
systems without significantly impacting performance. In
order to streamline the development of this
methodology, this project’s scope was limited to 64GB
nodes on NCAR’s Cheyenne computer. Experiments
were focused on measuring the effect that CPU clock
speed has on energy consumption for single nodes. The
experiments were performed on nodes running three
common performance benchmarks as well as on idle
(sleeping) nodes. Data was collected from the node itself
during execution, and from the power supplies feeding
the node. Although further exploration is necessary, the
results of this project suggest that managing CPU
frequency both during execution and while idle could be
a viable way to boost energy efficiency and reduce the
cost of HPC systems without sacrificing performance.

Abstract

 In the upper chart, the value represented by each
bar is an average of five separate runs for each job type,
with blue being the node side data, red being the power
supply data, both indicated in joules on the left, and the
green is the execution time indicated in seconds on the
right.
 The first notable finding displayed by this chart is the
agreement between the node readings and the power
supply readings. There are some discrepancies,
particularly for the slow runs, but these discrepancies
are likely do to an error in how the power supply data
was processed. Even with these discrepancies, the two
data streams have a correlation coefficient of R=0.8615,
which is an extremely strong correlation (P < 0.00001),
so we can be confident in the validity of these results.
 The second finding of note is that the energy use is
comparable between the rated and slow runs, while the
execution time is comparable between rated and turbo
runs. Using this data, we see that on average, the rated
runs used 45.25% less energy than the turbo runs
(P<0.00001), with only a 7% (P<0.02) increase in
execution time. Because of the apparent negative
impact on performance, it is not possible to conclude
from these results how downclocking to rated would
impact costs.
 In the lower chart we have the data from sleeping
nodes, with each bar representing the average of two
runs at each clock speed, the blue being node data and
red being PSU data, both being indicated in Watts. From
this data, we see that running idle nodes downclocked
to slow decreases the average power by 43.5%
compared to running them at turbo (P<0.00001).
 Using these cursory results, we can roughly estimate
that by downclocking idle nodes to slow,
NCAR-Wyoming’s utility bill could be decreased by tens
of thousands of dollars annually.

Energy Consumption and Execution Time by Job Type

Energy Consumption vs Clock Speed for Various Application Profiles

Spencer Diamond, Arizona State University, SIParCS
Dave Hart, Rory Kelly, Ben Matthews, NCAR

Average Power Readings on Sleeping Nodes

Results

 Tests were run using CESM2 benchmark kernels, all
modified to extend runtime: WACCM_imp_sol_vector,
CESM2_MG2, and CESM2_CLUBB; as well as running
sleep. These kernels were chosen because of their ease
of use, as well as the fact that they are used as
procurement benchmarks at NCAR as they are very
representative of the kind of applications being run on
NCAR systems.
 For collecting data, there are two easily accessible
data streams, getting data from the node itself, and
getting data from the power supplies that feed the node.
Neither data stream is calibratable, so to be confident in
the results, data was collected from both and their
correlation calculated. The node side data collection
becomes far more complicated for applications running
on multiple nodes, so we are limited to only single
nodes. On Cheyenne, nine power supplies feed a group
of 36 nodes, so in order to isolate our single node job,
the rest of the nodes in the group need to be empty, and
the extra power drawn by the other 35 nodes subtracted
out.
 In the batch script, the execution node name,
timestamps of the start and end of execution, and the
node power data is collected. Then, in a separate
python script, the node data is read from job output,
PSU data is read from database, then both data streams
are normalized and averaged, then multiplied by
execution time to get total energy. Then, total energy for
both data streams and execution time are written to
CSV.

Methodology

 There are still a lot of unanswered questions brought
up in the course of this project, and further research is
needed to fully answer these questions. Specifically,
testing on other hardware like large memory nodes, GPU
nodes, other HCP systems, etc; running actual
experimental applications and jobs running on more
than one node; and how I/O changes energy usage are
all worth investigating. There’s also a few questions
involving idle nodes, specifically the viability of fulling
shutting down portions of the system that will be idle for
long stretches of time.

Continuing Research

Mentors: Dave Hart, Rory Kelly, Ben Matthews
SIParCS & NESSI: AJ Lauer, Virginia Do, Jerry Cyccone, Max Cordes Galbraith, all the other SIParCS and NESSI interns
Thank you to NCAR for hosting this internship and to NSF for providing funding for this research
Special thanks to: Mick Condy, Sidd Ghosh, Richard Valent, Storm Knight, Joseph Mendoza, John Dennis

Acknowledgements

