
Performance Portability of Shallow
Water Model with Kokkos

Zephaniah Connell1,2 and Leila Ghaffari1,3

1National Center for Atmospheric Research
2Univeristy of Wyoming

3University of Colorado Boulder

Introduction to Kokkos

Introduction to the Shallow Water Model (SWM) mini-app

Motivation

Goal

Performance & Accuracy - CPU - Serial Conclusions

➢ Port the Shallow Water Model (SWM) mini-app to Kokkos with
limited modifications

➢ Optimize the performance of the ported code on different
hardware platforms

SWM is a venerable 2D shallow water
model benchmark on staggered finite
difference equations on a torus.

Acknowledgements

Future work

References

Mentors: Supreeth Suresh, Cena Miller, Jian Sun, and John Dennis

Research Support: Richard Loft and Thomas Hauser

SIParCS Admins and CODE Assistants: AJ Lauer, Virginia Do,

Jerry Cyccone, Max Cordes Galbraith

Carter Edwards, H., Trott, C. R., & Sunderland, D. (2014). Kokkos:
Enabling manycore performance portability through polymorphic memory
access patterns. Journal of Parallel and Distributed Computing, 74(12),
3202–3216. https://doi.org/10.1016/j.jpdc.2014.07.003

Parallel structurePattern

Index spacePolicy

Multi-dimensional data classViews

Work performed on each indexKernel

Memory location, execution
hardware, and execution method

Execution /
Memory Spaces

Kokkos is a C++ library that can be
used to write a single source code
that can execute serially on a
CPU, in parallel on a CPU using
OpenMP backend, and in parallel
on a GPU using CUDA backend. It
is performance portable because it
is architecture aware.

Architectures:
 GPU: Nvidia, AMD, Intel GPUs
 CPU: x86, Power 8, KNL, ARM
Compilers:
 GNU 5.3.0 or newer
 Intel 17.0.1 or newer
 Clang 4.0.0 or newer
 PGI 18.7 or newer
 CUDA 9.1 or newer

Performance & Accuracy - CPU - Parallel

Performance & Accuracy - GPU - Parallel

In my opinion,

for any project that may benefit from executing code

on different GPU architectures,

Kokkos is worthwhile.

➢ Run ported SWM code on Intel and AMD GPUs
➢ Remeasure performance after implementing the following or

other optimizations discovered after further research:
○ Explicit memory layouts
○ Refactoring the SWM data structures
○ Enabling vectorization for Views
○ Using TeamPolicy w/ lower level optimizations and indexing

➢ Test performance of multi-node and multiple GPU runs w/ MPI
➢ Further explore interoperability with 3rd party profilers

C++ Skylake 1-Core gnu/8.3.0 -O2
Kokkos Skylake 1-Core gnu/8.3.0 -O2

OpenMP Skylake 36-Core gnu/8.3.0 -O2
Kokkos Skylake 36-Core gnu/8.3.0 -O2

OpenACC V100 nvhpc/21.3 cuda/10.1 -O2
Kokkos V100 gnu/8.3.0 cuda/10.1 -O2

Kokkos performed ~50x slower than C++

Kokkos performed ~44x slower than OpenMP
and ~1.67x slower than C++ Serial

Best performance: ~1.6x faster than OpenACC
and ~43x faster than C++ Serial
Worst performance: ~4.4x slower than
OpenACC and ~3.4x faster than C++ Serial

➢ Portability is a desired capability which enables us to run our
code on ever-changing hardware and software platforms.

➢ It can be difficult and time-consuming to port or develop
multiple versions of code that only run on specific
architectures.

➢ Kokkos is a new framework that advertises the ability to
execute the same code on CPU or accelerators with limited or
no modifications.

➢ A Kokkos source code file can execute on many architectures
➢ Most Kokkos concepts are straightforward, so porting to

Kokkos generally isn’t difficult but time consuming
➢ The CPU performance for Serial and Parallel versions of

Kokkos was poor and needs further investigation
➢ The GPU performance of Kokkos was reasonable, but also

needs further investigation
➢ The Kokkos GitHub repository Wiki contains relatively

comprehensive documentation
➢ The Kokkos developers provide helpful assistance on Slack

within minutes

https://doi.org/10.1016/j.jpdc.2014.07.003

