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Introduction to Kokkos

Introduction to the Shallow Water Model (SWM) mini-app

   
Motivation

   
Goal
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➢ Port the Shallow Water Model (SWM) mini-app to Kokkos with 
limited modifications

➢ Optimize the performance of the ported code on different 
hardware platforms

SWM is a venerable 2D shallow water 
model benchmark on staggered finite  
difference equations on a torus.
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Kokkos is a C++ library that can be 
used to write a single source code 
that can execute serially on a 
CPU, in parallel on a CPU using 
OpenMP backend, and in parallel 
on a GPU using CUDA backend. It 
is performance portable because it 
is architecture aware. 

Architectures:
    GPU: Nvidia, AMD, Intel GPUs
    CPU: x86, Power 8, KNL, ARM
Compilers:
    GNU 5.3.0 or newer
    Intel 17.0.1 or newer
    Clang 4.0.0 or newer
    PGI 18.7 or newer
    CUDA 9.1 or newer
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In my opinion, 

for any project that may benefit from executing code 

on different GPU architectures, 

Kokkos is worthwhile.

➢ Run ported SWM code on Intel and AMD GPUs
➢ Remeasure performance after implementing the following or 

other optimizations discovered after further research:
○ Explicit memory layouts
○ Refactoring the SWM data structures
○ Enabling vectorization for Views
○ Using TeamPolicy w/ lower level optimizations and indexing

➢ Test performance of multi-node and multiple GPU runs w/ MPI
➢ Further explore interoperability with 3rd party profilers

C++ Skylake 1-Core gnu/8.3.0 -O2
Kokkos Skylake 1-Core gnu/8.3.0 -O2

OpenMP Skylake 36-Core gnu/8.3.0 -O2
Kokkos Skylake 36-Core gnu/8.3.0 -O2

OpenACC V100 nvhpc/21.3 cuda/10.1 -O2
Kokkos V100 gnu/8.3.0 cuda/10.1 -O2

Kokkos performed ~50x slower than C++

Kokkos performed ~44x slower than OpenMP 
and ~1.67x slower than C++ Serial

Best performance: ~1.6x faster than OpenACC 
and ~43x faster than C++ Serial
Worst performance: ~4.4x slower than 
OpenACC and ~3.4x faster than C++ Serial

➢ Portability is a desired capability which enables us to run our 
code on ever-changing hardware and software platforms.

➢ It can be difficult and time-consuming to port or develop 
multiple versions of code that only run on specific 
architectures.

➢ Kokkos is a new framework that advertises the ability to 
execute the same code on CPU or accelerators with limited or 
no modifications.

➢ A Kokkos source code file can execute on many architectures
➢ Most Kokkos concepts are straightforward, so porting to 

Kokkos generally isn’t difficult but time consuming
➢ The CPU performance for Serial and Parallel versions of 

Kokkos was poor and needs further investigation
➢ The GPU performance of Kokkos was reasonable, but also 

needs further investigation
➢ The Kokkos GitHub repository Wiki contains relatively 

comprehensive documentation
➢ The Kokkos developers provide helpful assistance on Slack 

within minutes
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