Employing Machine Learning Models for CESM Timing Data

Thomas Johnson III +Sheri Mickelson, Brian Dobbins, and John Dennis

NCAR

July 28, 2021

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

- The CESM community is perpetually developing.
- Community members want more tools to be able to enhance CESM capabilities and usability.
 - Processing CESM timing data for machine learning.
- High level goal is to predict performance.

- Machine learning centers on the usage of a subset of algorithms.
- These algorithms seek to become more efficient or effective at a given task.
- The algorithms are trained by providing data to learn from.

Employing Machine Learning Models for CESM Timing Data

NCAR

• Simpler scenario to test the workflow.

- Measure how effectively the machine learning methods can classifying different systems.
- Performing a classification of the hardware to later extend to more complex scenarios.

- Goal: For classification, could the models distinguish between the 3.5GHz Intel i5 vs. 2.5GHz Intel i7 runs.
- Data preprocessed with One Hot Encoding and Standard Scaling [1] [2].
- Models evaluated: SVM, Decision Trees, Random Forests, Multi-layer Perceptron, KNN.
- Principal Component Analysis, Select K Best methods.

- Using different hardware, but same run parameters.
- Same containerized CESM compset used: Aqua Planet.
- 4 cores used for each model run.

 Running at 5, 10, 15 model days for 6 runs each on both 3.5GHz Intel i5 Vs. 2.5GHz.

- The print statements in the component barriers have been commented out.
- The standing idea is that component barriers on will influence performance.
 - Exploring the performance of the machine learning methods to see if a significant difference can be found.
- Provides a more complex scenario for the machine learning methods.
- Provide some insight as to whether the component barriers are significantly affecting CESM runs.

- Goal: Classifying whether the input data was from a barriers on data point or barriers off data point.
- Similar overall process, with Recursive Feature Elimination (RFE) added for alternative feature selection.
- All ran on Cheyenne.

 All other parameters similar to 3.5GHz Intel i5 Vs. 2.5GHz Intel i7 experiment.

Employing Machine Learning Models for CESM Timing Data

- PCA
 - Using linear algebra operations to combine features into new features
- Select K Best
 - Using a metric to select k amount of features from the total features
 - Mutual Information Classifier
- RFE

- Builds a model and uses said model's metrics to select k features
- Decision tree

Overview of Results for 3.5GHz Intel i5 Vs. 2.5GHz Intel i7 Dataset

- 3.5GHz Intel i5 Vs. 2.5GHz Intel i7 accuracy results:
 - Highest mean accuracy is 99.2% from Decision Trees with Select K Best (example shown in plot below).
 - Lowest mean accuracy is 83.4% from Decision Trees with PCA.

First Tree Classification Predictions For Select K Best

NCAR

Overview of Results Cheyenne Component Barriers on vs Component Barriers Off

- Cheyenne component barriers on vs component barriers off
 - Highest mean accuracy is 66.1% from SVMs with PCA (example plot shown below).
 - Lowest mean accuracy is 30.1% from random forests with Select K Best.

First SVM Classification Predictions For PCA

Future Work

Increasing data available.

NCAR

UCAR

- Adding further machine learning models.
- Implementing widgets for an interactive notebook.
- Exploring more complex scenarios:
 - Exploring compsets and resolutions

First SVM Classification Predictions for Principal Component Analysis

References

- 1. Scikit-learn Developers. *sklearn.preprocessing.OneHotEncoder.* 2020. <u>https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html</u>.
- 2. Scikit-learn Developers. *Sklearn.preprocessing.StandardScaler.* 2020. <u>https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html</u>.
- 3. Brownlee, Jason. LOOCV for Evaluating Machine learning Algorithms. July 27, 2020. <u>https://machinelearningmastery.com/loocv-for-evaluating-machine-learning-algorithms/</u>.
- 4. Schneider, Jeff. Cross Validation. 1997. https://www.cs.cmu.edu/~schneide/tut5/node42.html.

- I would like to thank my excellent mentors Sheri Mickelson, Brian Dobbins, and John Dennis for their guidance and expertise.
- Thanks AJ Lauer, Virginia Do, Max Galbraith, Jerry Cyccone and the SIParCS program as a whole.
- Thanks to TDD, NCAR, and CISL.
- Special Thanks to the NSF.

Questions

Project GitHub Repository QR Code: <u>https://github.com/NCAR/SIPar</u> <u>CS-2021-Johnson</u>

Thomas Johnson III's:

LinkedIn: <u>https://www.linkedi</u> <u>n.com/in/thomas-j-</u> 3804a7a6/

GitHub: https://github.com /Herok4Build

https://orcid.org/00

00-0002-7767-7509

ORCID:

Employing Machine Learning Models for CESM Timing Data

- Utilizing Leave One Out Cross Validation, abbreviated LOOCV.
 - The preferred cross validation strategy for tiny datasets [3]
 [4].
- 10-Fold Stratified Cross Validation, abbreviated SCV [4].

Diagram of 10-Fold Cross Validation

Employing Machine Learning Models for CESM Timing Data

Number of Features for Data

- Cheyenne component barriers on vs. component barriers off using 86 features.
- 3.5GHz Intel i5 Vs. 2.5GHz Intel i7 dataset using 86 features.

3.5GHz Intel 15 Vs. 2.5GHz Intel 17 Runs of Aqua World Results						
Model Group	Mean of LOOCV for PCA	Mean of 10- Fold SCV for PCA	Mean of LOOCV for Select K Best	Mean of 10- Fold SCV for Select K Best		
SVMs	89.4%	91.7%	97.6%	97.8%		
Decision Trees	83.4%	83.5%	99.2%	98.8%		
Random Forests	85.8%	86.6%	98%	97.9%		
Multi-layer Perceptron Neural Network	87.1%	89.2%	94.4%	94.5%		
KNN	86.7%	87.7%	95.1%	95%		

Employing Machine Learning Models for CESM Timing Data

NCAR UCAR

Component Barriers On Versus Component Barriers Off Results

Model Group	Mean of LOOCV for PCA	Mean of 10- Fold SCV for PCA	Mean of LOOCV for Select K Best	Mean of 10- Fold SCV for Select K Best
SVMs	66.1%	66.6%	36.2%	54.4%
Decision Trees	54.6%	57.6%	32.2%	50.4%
Random Forests	62.6%	62.7%	30.1%	47.2%
Multi-layer Perceptron Neural Network	65.1%	66.6%	36.7%	52.6%
KNN	57.1%	62.6%	49.3%	54.5%

NCAR UCAR

Employing Machine Learning Models for CESM Timing Data

Component Barriers On Versus Component Barriers Off Results

Model Group	Mean of LOOCV for Recursive Feature Elimination	Mean of 10-Fold SCV for Recursive Feature Elimination
SVMs	65.6%	65%
Decision Trees	63.6%	62%
Random Forests	57.8%	58.6%
Multi-layer Perceptron Neural Network	64%	62%
KNN	59.3%	61.5%

Employing Machine Learning Models for CESM Timing Data

NCAR

