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Motivation for Workflow
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• The CESM community is perpetually developing.
• Community members want more tools to be able to enhance 

CESM capabilities and usability.
– Processing CESM timing data for machine learning.

• High level goal is to predict performance.
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What is Machine Learning
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• Machine learning centers on the usage of a subset of 
algorithms.

• These algorithms seek to become more efficient or effective at 
a given task.

• The algorithms are trained by providing data to learn from.
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Processor Comparison Dataset Motivation
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• Simpler scenario to test the workflow.
– Measure how effectively the machine learning methods 

can classifying different systems.
• Performing a classification of the hardware to later extend to 

more complex scenarios.

Employing Machine Learning Models for CESM Timing Data



Processor Comparison Dataset Processing
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• Goal: For classification, could the models distinguish between 
the 3.5GHz Intel i5 vs. 2.5GHz Intel i7 runs.

• Data preprocessed with One Hot Encoding and Standard 
Scaling [1] [2].

• Models evaluated: SVM, Decision Trees, Random Forests, 
Multi-layer Perceptron, KNN.

• Principal Component Analysis, Select K Best methods.
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Processor Comparison Data
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• Using different hardware, but same run parameters.
• Same containerized CESM compset used: Aqua Planet.
• 4 cores used for each model run.
• Running at 5, 10, 15 model days for 6 runs each on both 

3.5GHz Intel i5 Vs. 2.5GHz.
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Barrier Comparison Dataset Motivation
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• The print statements in the component barriers have been 
commented out.

• The standing idea is that component barriers on will influence 
performance.
– Exploring the performance of the machine learning 

methods to see if a significant difference can be found.
• Provides a more complex scenario for the machine learning 

methods.
• Provide some insight as to whether the component barriers 

are significantly affecting CESM runs.
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Barrier Comparison Dataset Processing
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• Goal: Classifying whether the input data was from a barriers 
on data point or barriers off data point.

• Similar overall process, with Recursive Feature Elimination 
(RFE) added for alternative feature selection.

• All ran on Cheyenne.
• All other parameters similar to 3.5GHz Intel i5 Vs. 2.5GHz 

Intel i7 experiment.
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Dimensionality Reduction and Feature Selection Methods
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• PCA
– Using linear algebra operations to combine features into 

new features
• Select K Best 

– Using a metric to select k amount of features from the 
total features

– Mutual Information Classifier 
• RFE

– Builds a model and uses said model’s metrics to select k 
features

– Decision tree
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Overview of Results for 3.5GHz Intel i5 Vs. 2.5GHz Intel i7 
Dataset
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• 3.5GHz Intel i5 Vs. 2.5GHz Intel i7 accuracy results:
– Highest mean accuracy is 99.2% from Decision Trees with 

Select K Best (example shown in plot below).
– Lowest mean accuracy is 83.4% from Decision Trees with 

PCA.
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Note: Experiment1_QPC4 
refers to 2.3GHz Intel i7 
and Experiment1_DT_QPC4 
refers to 3.5GHz Intel i5. 



Overview of Results Cheyenne Component Barriers on vs 
Component Barriers Off
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• Cheyenne component barriers on vs component barriers off
– Highest mean accuracy is 66.1% from SVMs with PCA 

(example plot shown below).
– Lowest mean accuracy is 30.1% from random forests with 

Select K Best.
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Note: 
Experiment1_CH4c_QPC4 
refers to  component 
barriers off and 
Experiment1_CH4c_QPC4
_barriers refers component 
barriers on.



Future Work
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• Increasing data available.
• Adding further machine learning models.
• Implementing widgets for an interactive notebook.
• Exploring more complex scenarios:

– Exploring compsets and resolutions
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Example plot examining 
B1850 vs F2000 compsets
at two different resolutions 
for each compset.
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CS-2021-Johnson
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Cross Validation Methods
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• Utilizing Leave One Out Cross Validation, abbreviated 
LOOCV.
– The preferred cross validation strategy for tiny datasets [3] 

[4].
• 10-Fold Stratified Cross Validation, abbreviated SCV [4].
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Number of Features for Data

• Cheyenne component barriers on vs. component barriers off 
using 86 features.

• 3.5GHz Intel i5 Vs. 2.5GHz Intel i7 dataset using 86 
features.
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3.5GHz Intel i5 Vs. 2.5GHz Intel i7 Runs of Aqua World 
Results
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Model 
Group

Mean of 
LOOCV for 
PCA

Mean of 10-
Fold SCV 
for PCA

Mean of 
LOOCV for 
Select K 
Best

Mean of 10-
Fold SCV 
for Select K 
Best

SVMs 89.4% 91.7% 97.6% 97.8%

Decision 
Trees

83.4% 83.5% 99.2% 98.8%

Random 
Forests

85.8% 86.6% 98% 97.9%

Multi-layer 
Perceptron 
Neural 
Network

87.1% 89.2% 94.4% 94.5%

KNN 86.7% 87.7% 95.1% 95%
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Component Barriers On Versus Component Barriers Off Results
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Model 
Group

Mean of 
LOOCV for 
PCA

Mean of 10-
Fold SCV 
for PCA

Mean of 
LOOCV for 
Select K 
Best

Mean of 10-
Fold SCV 
for Select K 
Best

SVMs 66.1% 66.6% 36.2% 54.4%

Decision 
Trees

54.6% 57.6% 32.2% 50.4%

Random 
Forests

62.6% 62.7% 30.1% 47.2%

Multi-layer 
Perceptron 
Neural 
Network

65.1% 66.6% 36.7% 52.6%

KNN 57.1% 62.6% 49.3% 54.5%
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Component Barriers On Versus Component Barriers Off Results
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Model Group Mean of LOOCV for 
Recursive Feature 
Elimination

Mean of 10-Fold SCV 
for Recursive 
Feature Elimination

SVMs 65.6% 65%

Decision Trees 63.6% 62%

Random Forests 57.8% 58.6%

Multi-layer Perceptron 
Neural Network

64% 62%

KNN 59.3% 61.5%
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