The potential to reduce uncertainty in regional runoff projections from climate models

Lehner, F., Wood, A., Vano, J., Lawrence, D. M., Clark, M. P., et al. (2019). The potential to reduce uncertainty in regional runoff projections from climate models. Nature Climate Change, doi:https://doi.org/10.1038/s41558-019-0639-x

Title The potential to reduce uncertainty in regional runoff projections from climate models
Genre Article
Author(s) Flavio Lehner, Andrew Wood, Julie Vano, David M. Lawrence, Martyn P. Clark, Justin Mankin
Abstract Increasingly, climate change impact assessments rely directly on climate models. Assessments of future water security depend in part on how the land model components in climate models partition precipitation into evapotranspiration and runoff, and on the sensitivity of this partitioning to climate. Runoff sensitivities are not well constrained, with CMIP5 models displaying a large spread for the present day, which projects onto change under warming, creating uncertainty. Here we show that constraining CMIP5 model runoff sensitivities with observed estimates could reduce uncertainty in runoff projection over the western United States by up to 50%. We urge caution in the direct use of climate model runoff for applications and encourage model development to use regional-scale hydrological sensitivity metrics to improve projections for water security assessments.
Publication Title Nature Climate Change
Publication Date Dec 26, 2019
Publisher's Version of Record https://doi.org/10.1038/s41558-019-0639-x
OpenSky Citable URL https://n2t.org/ark:/85065/d7p27283
OpenSky Listing View on OpenSky
CISL Affiliations

Back to our listing of publications.